Legend

Read
Write
General
Functions
Schema
Performance

Syntax

Read Query Structure

[MATCH WHERE]

[OPTIONAL MATCH WHERE]
[WITH [ORDER BY] [SKIP] [LIMIT]]
RETURN [ORDER BY] [SKIP] [LIMIT]

MATCH

MATCH (n:Person)-[:KNOWS]->(m:Person)
WHERE n.name = 'Alice'
Node patterns can contain labels and properties.
MATCH (n)-->(m)
Any pattern can be used in MATCH.
MATCH (n \{name: 'Alice'\})-->(m)
Patterns with node properties.
MATCH $p=(n)-->(m)$
Assign a path to p .
OPTIONAL MATCH (n)-[r]->(m)
Optional pattern: nulls will be used for missing parts.

WHERE

WHERE n.property <> \$value
Use a predicate to filter. Note that where is always part of a MATCH, OPTIONAL MATCH, WITH or START clause. Putting it after a different clause in a query will alter what it does.

Write-Only Query Structure

(CREATE [UNIQUE] | MERGE)*
[SET|DELETE|REMOVE|FOREACH]*
[RETURN [ORDER BY] [SKIP] [LIMIT]]

Read-Write Query Structure

[MATCH WHERE]

[OPTIONAL MATCH WHERE]
[WITH [ORDER BY] [SKIP] [LIMIT]]
(CREATE [UNIQUE] | MERGE)*
[SET|DELETE|REMOVE|FOREACH]*
[RETURN [ORDER BY] [SKIP] [LIMIT]]

CREATE

CREATE (n \{name: \$value\})
Create a node with the given properties.
CREATE (n \$ m mp)
Create a node with the given properties.
UNWIND \$listOfMaps AS properties
CREATE (n) SET $\mathrm{n}=$ properties
Create nodes with the given properties.
CREATE (n)-[r:KNOWS]->(m)
Create a relationship with the given type and direction; bind a variable to it.

CREATE (n)-[:LOVES \{since: \$value\}]->(m)
Create a relationship with the given type, direction, and properties.
SET

SET n.property1 = \$value1,
n.property2 = \$value2

Update or create a property.
SET n = \$map
Set all properties. This will remove any existing properties.
SET n += \$map
Add and update properties, while keeping existing ones. SET n:Person
Adds a label Person to a node.

RETURN
RETURN *
Return the value of all variables.

RETURN n AS columnName
Use alias for result column name.
RETURN DISTINCT n
Return unique rows.
ORDER BY n.property
Sort the result.
ORDER BY n.property DESC
Sort the result in descending order.
SKIP \$skipNumber
Skip a number of results.
LIMIT \$limitNumber
Limit the number of results.
SKIP \$skipNumber LIMIT \$limitNumber
Skip results at the top and limit the number of results.
RETURN count(*)
The number of matching rows. See Aggregating
Functions for more.

MATCH (user)-[:FRIEND]-(friend)

WHERE user. name = \$name
WITH user, count(friend) AS friends
WHERE friends > 10
RETURN user
The with syntax is similar to return. It separates query parts explicitly, allowing you to declare which variables to carry over to the next part.
MATCH (user)-[:FRIEND]-(friend)
WITH user, count(friend) AS friends
ORDER BY friends DESC
SKIP 1
ETURN user
ORDER BY, SKIP, and LIMIT can also be used with with.
UNION
MATCH (a)-[:KNOWS]->(b)
RETURN b. name

RETURN b.name
,
RETUN (a)-[:LOVES]->(b)
Returns the distinct union of all query results. Result column types and names have to match.

MATCH (a)-[:KNOWS]->(b)
RETURN b.name
UNION ALL
MATCH (a)-[:LOVES]->(b)
RETURN b.name
Returns the union of all query results, including
duplicated rows.

MERGE (n : Person \{name: \$value\})

ON CREATE SET n.created = timestamp()
ON MATCH SET
n.counter $=$ coalesce(n.counter, 0) +1
n.accessTime = timestamp()

Match a pattern or create it if it does not exist. Use on CREATE and ON MATCH for conditional updates.

MATCH (a:Person \{name: \$value1\}),
(b:Person \{name: \$value2\})
MERGE (a)-[r:LOVES]->(b)
MERGE finds or creates a relationship between the nodes.
MATCH (a:Person \{name: \$value1\})
MERGE
(a)-[r:KNOWS]->(b:Person \{name: \$value3\})

MERGE finds or creates subgraphs attached to the node.

REMOVE
REMOVE n : Person
Remove a label from n.
REMOVE n. property
Remove a property.

delete n, r
Delete a node and a relationship.
detach delete n
Delete a node and all relationships connected to it.
MATCH (n)
detach delete n
Delete all nodes and relationships from the database.

FOREACH

FOREACH (r IN relationships(path) |

SET r.marked = true)
Execute a mutating operation for each relationship in a path.

FOREACH (value in coll ।
CREATE (:Person \{name: value\}))
Execute a mutating operation for each element in a list.

CALL

CALL db.labels() YIELD label
This shows a standalone call to the built-in procedure db.labels to list all labels used in the database. Note that required procedure arguments are given explicitly in brackets after the procedure name.
CALL java.stored.procedureWithArgs
Standalone calls may omit YIELD and also provide
arguments implicitly via statement parameters, e.g. a
standalone call requiring one argument input may be run by passing the parameter map \{input: 'foo'\}.

CALL db.labels() YIELD label
RETURN count(label) AS count
Calls the built-in procedure db.labels inside a larger query to count all labels used in the database. Calls inside a larger query always requires passing arguments and naming results explicitly with Yield.

Import

OAD CSV FROM

https://neo4j.com/docs/cypher-
efcard/3.4/csv/artists.csv' AS line
CREATE (:Artist \{name: line[1], year: toInteger(line[2])\}) Load data from a CSV file and create nodes.

LOAD CSV WITH HEADERS FROM
'https://neo4j.com/docs/cypher-refcard/3.4/csv/artists-with-headers.csv' AS line
CREATE (:Artist \{name: line.Name, year:
toInteger(line.Year)\})
Load CSV data which has headers.
USING PERIODIC COMMIT 500
LOAD CSV WITH HEADERS FROM
https://neo4j.com/docs/cypher-refcard/3.4/csv/artists-
with-headers.csv' AS line
CREATE (:Artist \{name: line.Name, year:
toInteger(line.Year)\})
Commit the current transaction after every 500 rows when importing large amounts of data.

LOAD CSV FROM
https://neo4j.com/docs/cypher-refcard/3.4/csv/artistsfieldterminator.csv'
AS line FIELDTERMINATOR '
CREATE (:Artist \{name: line[1], year: toInteger(line[2])\}) Use a different field terminator, not the default which is a comma (with no whitespace around it).

Performance

- Use parameters instead of literals when possible. This allows Cypher to re-use your queries instead of having to parse and build new execution plans.
- Always set an upper limit for your variable length patterns. It's easy to have a query go wild and touch all nodes in a graph by mistake.
- Return only the data you need. Avoid returning whole nodes and relationships - instead, pick the data you need and return only that.
- Use profile / EXPLAIN to analyze the performance of your queries. See Query Tuning for more information on these and other topics, such as planner hints.

DELETE n, r DELETE
Delete a node and a relationship
DETACH DELETE \quad I
Delete a node and all relationships connected to it.
MATCH (n)
Delete all nodes and relationships from the database
FOREACH (r IN relationships(path)

SET r.marked = true)
Execute a mutating operation for each relationship in a path.
FOREACH (value in coll ।
CREATE (:Person \{name: value\}))
Execute a mutating operation for each element in a list.

CALL

CALL db.labels() YIELD label
This shows a standalone call to the built-in procedure db.labels to list all labels used in the database. Note that required procedure arguments are given explicitly in brackets after the procedure name
CALL java.stored.procedureWithArgs
Standalone calls may omit YIELD and also provide arguments implicitly via statement parameters, e.g. a standalone call requiring one argument input may be ru by passing the parameter map \{input: 'foo'\}.

CALL db.labels() YIELD labe

RETURN count(label) AS count
Calls the built-in procedure db.labels inside a larger query to count all labels used in the database. Calls inside a larger query always requires passing arguments and naming results explicitly with YIELD.

Import

LOAD CSV FROM

'https://neo4j.com/docs/cypher-
refcard/3.4/csv/artists.csv' AS line
CREATE (:Artist \{name: line[1], year: toInteger(line[2])\})
Load data from a CSV file and create nodes
LOAD CSV WITH HEADERS FRO
'https://neo4j.com/docs/cypher-refcard/3.4/csv/artists with-headers.csv' AS line
CREATE (:Artist \{name: line.Name, year
toInteger(line.Year)\})
Load CSV data which has headers
USING PERIODIC COMMIT 500
LOAD CSV WITH HEADERS FROM
'https://neo4j.com/docs/cypher-refcard/3.4/csv/artists-with-headers.csv' AS line
CREATE (:Artist \{name: line.Name, year
toInteger(line.Year)\})
Commit the current transaction after every 500 rows when importing large amounts of data.

LOAD CSV FROM hieldterminator.csv
AS line FIELDTERMINATOR
CREATE (:Artist \{name: line[1], year: toInteger(line[2])\} Use a different field terminator, not the default which is a comma (with no whitespace around it).

Performance

- Use parameters instead of literals when possible. This allows Cypher to re-use your queries instead of having to parse and build new execution plans
- Always set an upper limit for your variable length patterns. It's easy to have a query go wild and touch al nodes in a graph by mistake.
- Return only the data you need. Avoid returning whole nodes and relationships - instead, pick the data you need and return only that.
- Use PROFILE / EXPLAIN to analyze the performance of your queries. See Query Tuning for more information on these and other topics, such as planner hints.

Operators	
General	DISTINCT, ., []
Mathematical	$+,-, *, /, \%, \wedge$
Comparison	$=,<>,<,>,<=,>=$, IS NULL, IS NOT NULL
Boolean	AND, OR, XOR, NOT
String	+
List	,+ IN, $[\times],[x \ldots y]$
Regular Expression	$=\sim$
String matching	STARTS WITH, ENDS WITH, CONTAINS

null

- null is used to represent missing/undefined values - null is not equal to null. Not knowing two values does not imply that they are the same value. So the expression null = null yields null and not true. To check if an expression is null, use is NULL.
- Arithmetic expressions, comparisons and function calls (except coalesce) will return null if any argument is null.
- An attempt to access a missing element in a list or a property that doesn’t exist yields null.
- In OPTIONAL MATCH clauses, nulls will be used for missing parts of the pattern.

n.property <> \$value

Use comparison operators.
exists(n.property)
Use functions.
n.number >= 1 AND n.number <= 10

Use boolean operators to combine predicates
1 <= n.number <= 10
Use chained operators to combine predicates.
n:Person
Check for node labels.
variable IS NULL
Check if something is null.
NOT exists(n.property) OR n.property = \$value
Either the property does not exist or the predicate is true

n. property = \$value

Non-existing property returns null, which is not equal to anything.
["property"] = \$value
Properties may also be accessed using a dynamically computed property name.
n. property STARTS WITH 'Tob' OR
n. property Ends WITH ' n ' OR
n. property CONTAINS 'goodie'

String matching.
n. property =~ 'Tob.*'

String regular expression matching.
(n)-[:KNOWS]->(m)
Ensure the pattern has at least one match
NOT (n)-[:KNOWS]->(m)
Exclude matches to (n)-[:KNOWS]->(m) from the result
n.property IN [\$value1, \$value2]

Check if an element exists in a list.
CASE
CASE n.eyes
WHEN 'blue' THEN 1
WHEN 'brown' THEN 2
ELSE 3
END
Return THEN value from the matching WHEN value. The ELSE
value is optional, and substituted for null if missing.
CASE
WHEN n.eyes = 'blue' THEN 1
WHEN n.age < 40 THEN 2
ELSE 3
END
Return THEN value from the first WHEN predicate evaluating
to true. Predicates are evaluated in order.
(n:Person)
Node with Person label.
(n:Person:Swedish)
Node with both Person and Swedish labels.
(n:Person \{name: \$value\})
Node with the declared properties.
()-[r \{name: \$value\}]-()

Matches relationships with the declared properties.
(n) $-\gg(m)$
Relationship from n to m.
(n) --(m)
Relationship in any direction between n and m .
(n : Person) -->(m)
Node n labeled Person with relationship to m
(m)<-[:KNOWS]-(n)

Relationship of type knows from n to m .
(n$)$-[:KNOWS|:LOVES]->(m)
Relationship of type knows or of type LOVES from n to m .
(n)-[r]->(m)
Bind the relationship to variable r .
(n)-[*1..5]->(m)

Variable length path of between 1 and 5 relationships from n to m.
(n) - [*]->(m)
Variable length path of any number of relationships from n to m. (See Performance section.)
(n)-[:KNOWS]->(m \{property: \$value\})

A relationship of type knows from a node n to a node m with the declared property.
shortestPath((n1:Person)-[*..6]-(n2:Person))
Find a single shortest path.
allShortestPaths((n1:Person)-[*..6]->(n2:Person)
Find all shortest paths.
size((n)-->()-->())
Count the paths matching the pattern
Labels
CREATE (n:Person \{name: \$value\})
Create a node with label and property
MERGE (n:Person \{name: \$value\})
Matches or creates unique node(s) with the label and property.
SET n:Spouse:Parent:Employee
Add label(s) to a node
MATCH (n :Person)
Matches nodes labeled Person
MATCH (n :Person)
WHERE n.name = \$value
Matches nodes labeled Person with the given name.
WHERE (n :Person)
Checks the existence of the label on the node.
labels(n)
Labels of the node.
REMOVE n:Person
Remove the label from the node

Maps

\{name: 'Alice', age: 38,
address: \{city: 'London', residential: true\}\} Literal maps are declared in curly braces much like property maps. Lists are supported.

WITH \{person: \{name: 'Anne', age: 25\}\} AS p
RETURN p.person.name
Access the property of a nested map.
MERGE (p:Person \{name: \$map.name\})
ON CREATE SET p = \$map
Maps can be passed in as parameters and used either as a map or by accessing keys.

MATCH (matchedNode:Person)
RETURN matchedNode
Nodes and relationships are returned as maps of their data.
map.name, map.age, map.children[0]
Map entries can be accessed by their keys. Invalid keys result in an error.

Functions

coalesce(n.property, \$defaultValue)
The first non-null expression.
timestamp()
Milliseconds since midnight, January 1, 1970 UTC.
(nodeorRelationship)
The internal id of the relationship or node.
toInteger(\$expr)
Converts the given input into an integer if possible; otherwise it returns null.
toFloat(\$expr)
converts the given input into a floating point number if possible; otherwise it returns null.
oBoolean(\$expr)
Converts the given input into a boolean if possible; otherwise it returns null.
keys(\$expr)
Returns a list of string representations for the property names of a node, relationship, or map.
roperties(\{expr\})
Returns a map containing all the properties of a node or relationship.

Temporal Functions
date("2018-04-05")
Returns a date parsed from a string.
localtime("12:45:30.25")
Returns a time with no time zone.
time("12:45:30.25+01:00")
Returns a time in a specified time zone
localdatetime("2018-04-05T12:34:00") Returns a datetime with no time zone.
datetime("2018-04-05T12:34:00[Europe/Berlin]") Returns a datetime in the specified time zone.
date(\{year: \{year\}, month: \{month\}, day: \{day\}\}) All of the temporal functions can also be called with a map of named components. This example returns a date from year, month and day components. Each function supports a different set of possible components.
datetime(\{date: \{date\}, time: \{time\}\})
Temporal types can be created by combining other types This example creates a datetime from a date and a time.
date(\{date: \{datetime\}, day: 5\})
Temporal types can be created by selecting from more complex types, as well as overriding individual components. This example creates a date by selecting from a datetime, as well as overriding the day component.

WITH date("2018-04-05") AS d
RETURN d.year, d.month, d.day, d.week, d.dayOfWeek Accessors allow extracting components of temporal types.

Mathematical Functions
abs(\$expr)
The absolute value.
rand()
Returns a random number in the range from 0
(inclusive) to 1 (exclusive), [0,1). Returns a new value for each call. Also useful for selecting a subset or random ordering.

ound(\$expr)

Round to the nearest integer; ceil() and floor() find the next integer up or down.
sqrt(\$expr)
The square root.
sign(\$expr)
0 if zero, -1 if negative, 1 if positive
sin(\$expr)
Trigonometric functions also include $\cos (), \tan (), \cot ()$, $\operatorname{asin}(), \operatorname{acos}(), \operatorname{atan}(), \operatorname{atan} 2()$, and haversin(). Al arguments for the trigonometric functions should be in radians, if not otherwise specified
degrees(\$expr), radians(\$expr), pi() Converts radians into degrees; use radians() for the reverse, and pi() for π
log10(\$expr), $\log (\$ \operatorname{expr}), \exp (\$ \operatorname{expr})$, e($)$ Logarithm base 10, natural logarithm, e to the power of the parameter, and the value of e.
$\operatorname{point}(\{x: \$ x, y, \xi y\})$
Returns a point in a 2D cartesian coordinate system
point(\{latitude: \$y, longitude: \$x\})
Returns a point in a 2D geographic coordinate system, with coordinates specified in decimal degrees.
point(\{x: \$x, y: \$y, z: \$z\})
Returns a point in a 3D cartesian coordinate system
point(\{latitude: \$y, longitude: \$x, height: \$z\}) Returns a point in a 3D geographic coordinate system, with latitude and longitude in decimal degrees, and height in meters.
distance(point(\{x: \$x1, y: \$y1\}), point(\{x: \$x2, y: \$y2\})) Returns a floating point number representing the linear distance between two points. The returned units will be the same as those of the point coordinates, and it will work for both 2D and 3D cartesian points.
distance(point(\{latitude: \$y1, longitude: \$x1\}), point(\{latitude: \$y2, longitude: \$x2\}))
Returns the geodesic distance between two points in meters. It can be used for 3D geographic points as well.

Duration Functions

duration("P1Y2M10DT12H45M30.25S")
Returns a duration of 1 year, 2 months, 10 days, 12 hours, 45 minutes and 30.25 seconds.
duration.between(\$date1,\$date2)
Returns a duration between two temporal instances
WITH duration("P1Y2M10DT12H45M") AS d
RETURN d.years, d.months, d.days, d.hours, d.minutes Returns 1 year, 14 months, 10 days, 12 hours and 765 minutes.
iITH duration("P1Y2M10DT12H45M") AS d
ETURN d.years, d.monthsOfYear, d.days, d.hours,
d.minutesofHour

Returns 1 year, 2 months, 10 days, 12 hours and 45 minutes.
date("2015-01-01") + duration("P1Y1M1D")
Returns a date of 2016-02-02. It is also possible to subtract durations from temporal instances.
duration("PT30S") * 10
Returns a duration of 5 minutes. It is also possible to
divide a duration by a number.

toString(Sexpression)
String representation of the expression
replace(\$original, \$search, \$replacement)
Replace all occurrences of search with replacement. All arguments must be expressions.
substring(\$original, \$begin, \$subLength)
Get part of a string. The subLength argument is optional

left(\$original, \$subLength),

right(\$original, \$subLength)
The first part of a string. The last part of the string
rim(\$original), lTrim(\$original),
rTrim(\$original)
Trim all whitespace, or on the left or right side.
oUpper(\$original), toLower(\$original)
UPPERCASE and lowercase
split(\$original, \$delimiter)
Split a string into a list of strings
reverse(\$original)
Reverse a string.
size(\$string)
Calculate the number of characters in the string.

[^0]length(path)
The number of relationships in the path.
nodes(path)
The nodes in the path as a list

The relationships in the path as a list
extract(x IN nodes(path) | x.prop)
Extract properties from the nodes in a path.

Relationship Functions

type(a relationship)
String representation of the relationship type
startNode(a relationship)
Start node of the relationship.
endNode(a_relationship)
End node of the relationship.
id(a_relationship)
The internal id of the relationship.

CREATE INDEX ON :Person(name)
Create an index on the label Person and property name
MATCH (n:Person) WHERE n.name = \$value
An index can be automatically used for the equality comparison. Note that for example toLower(n.name) = \$value will not use an index.
MATCH (n : Person)
WHERE n.name IN [\$value]
An index can automatically be used for the in list checks.
MATCH (n : Person)
USING INDEX n:Person(name)
WHERE n.name = \$value
Index usage can be enforced when Cypher uses a suboptimal index, or more than one index should be used.

DROP INDEX ON :Person(name)
Drop the index on the label person and property name.

ONSTRAINT

ASSERT P ON (p:Person)
Create a unique property constraint on the label Person and property name. If any other node with that label is updated or created with a name that already exists, the write operation will fail. This constraint will create an accompanying index.
orop constraint on (p:Person)
ASSERT p.name IS UniQue
Drop the unique constraint and index on the label Person and property name.

CREATE CONSTRAINT ON (p:Person)
ASSERT exists(p.name)
(\star) Create a node property existence constraint on the label Person and property name. If a node with that label is created without a name, or if the name property is removed from an existing node with the Person label, the write operation will fail.
dROP CONSTRAINT ON (p:Person)
ASSERT exists(p.name)
(\star) Drop the node property existence constraint on the label Person and property name.
CREATE CONSTRAINT ON ()-[l:LIKED]-()
ASSERT exists(l.when)
(\star) Create a relationship property existence constraint on the type LIKED and property when. If a relationship with that type is created without a when, or if the when property is removed from an existing relationship with the LIKED type, the write operation will fail.
dROP CONSTRAINT ON ()-[l:LIKED]-()
ASSERT exists(l.when)
(\star) Drop the relationship property existence constraint on the type Liked and property when.
CREATE CONSTRAINT ON (p:Person)
ASSERT (p.firstname, p.surname) IS NODE KEY
(\star) Create a Node Key constraint on the label Person and properties firstname and surname. If a node with that label is created without both firstname and surname or if the combination of the two is not unique, or if the firstname and/or surname labels on an existing node with the Person label is modified to violate these constraints, the write operation will fail.
dROP CONSTRAINT ON (p:Person)
ASSERT (p.firstname, p.surname) IS NODE KEY
(\star) Drop the Node Key constraint on the label Person and properties firstname and surname.

[^0]: Aggregating Functions

 The number of matching rows
 count(variable)
 The number of non-null values.
 count(DISTINCT variable)
 All aggregating functions also take the distinct operator, which removes duplicates from the values
 collect(n.property)
 List from the values, ignores null.
 sum(n.property)
 Sum numerical values. Similar functions are avg(), min(), $\max ()$.
 percentileDisc(n.property, \$percentile)
 Discrete percentile. Continuous percentile is
 percentileCont(). The percentile argument is from 0.0 to 1.0.
 stDev(n.property)
 Standard deviation for a sample of a population. For an entire population use stDevP().

