
Model Analysis 



Equilibrium concentrations 

Finding equilibrium concentrations:  computation of nullclines. 

Definition of nullcline. The x-nullcline is a set of points in the phase plane so that           .  
The y-nullcline is a set of points in the phase plane so that            .  
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For understanding the system dynamics, following the kinetics of variable concentrations 
according to time may not be sufficient. 
 
 

We need to use an abstract space called the phase space or in the case of two dimensions 
the phase plane where the coordinates are those of the dynamic variables. 
This space is used to understand how the dynamic systems evolves in time. 

 
Lets take a simple example of two ODEs: 
 
 
 
The phase plane will represent the system in (x,y) coordinates 
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Equilibrium concentrations 

Solving the equation             implies:                                      
They are two x-nullclines:  the y-axis and the straight-line of equation x = 1 - y  
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Solving the equation             implies:                                      
They are two y-nullclines: the x-axis and the straight-line of equation y = 2 - 3x 
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red lines: y-nullclines 
blue lines: x-nullclines 
black dots: equilibrium points 

Equilibrium points are the points where both 
               and               . 
 
They correspond to the points where the x-nullcline 
and y-nullcline cross. 
Thus, the system has four equilibrium points which 
coordinates are: 
(0,0), (0,2), (1,0), (1/2,1/2).  
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Next step: establishment of stability of the equilibrium point (stable or unstable steady state?) 
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Equilibrium concentrations 

Linear stability of the equilibrium points 
 
It is performed by extracting the matrix of partial derivatives (the Jacobian), evaluating the components 
of the equilibrium points and examining the eigenvalues of the resulting matrix. 
For the following system of equation:  
 
                                         the Jacobian is given by:  
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An equilibrium point will be stable if all eigenvalues have negative real parts; if at least one eigenvalue 
has a positive real part, then the point is unstable. 
For 2x2 systems, on can show that the eigenvalues of A will have negative real parts, if and only if, the 
determinant of A is positive and the trace of A is negative. 
detA = a11a22 – a12a21 and TrA = a11 + a22 
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Equilibrium concentrations 
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At point (0,0), we have:                         then detA = 2 and TrA = 3 meaning that the equilibrium point (0,0) is unstable. 
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Both eigenvalues are negatives. 

At point (0,2), we have:                         then detA = 2 and TrA = -3 meaning that the equilibrium point (0,2) is stable. 
1 0

6 2
A

 
  

  

1 0

6 2
A I






  
   

    2det( ) ( 1 )( 2 ) 3 2 0A I             

To find the values of the two eigenvalues we have to solve: 

We obtained  = 1 and 1 = -1 and 2 = -2  

At point (1,0), we have:                         then detA = 1 and TrA = -2 meaning that the equilibrium point (1,0) is stable. 
 
We have det(A-I) = (-1-)(-1-) = 0 thus  = 0 , only one solution  = -1  
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At point (1/2,1/2), we have:                                then detA = -1/2 and TrA = -1 meaning that the equilibrium point (1/2, 
1/2) is unstable. 
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Equilibrium concentrations 

Different types of equilibrium points:  



Phase plane 

red lines: y-nullclines 
blue lines: x-nullclines 
black dots: equilibrium points 

The x-nullcline is the set of points in the plan where dx/dt = 0. Thus, it naturally divides the plan in regions where 
dx/dt > 0 or dx/dt < 0. If dx/dt > 0 it means that x is increasing which in turn means it is moving rightward in the 
plane. If dx/dt < 0, x is decreasing and it is moving leftward in the plane. In the same manner, the y-nullcline is the 
set of points in the plan where dy/dt = 0. If dy/dt > 0, y is increasing and moving upward in the plan. If dy/dt < 0, y 
is decreasing and moving downward in the plane 

dx/dt > 0  dx/dt = 0 dx/dt < 0  

dy/dt > 0  

dy/dt = 0 

dy/dt < 0  

For a point (x,y), the table summarizes the 
possible  directions of the point motion 
once the nullclines are known 



Phase plane 

Then one can represent the vector field of the dynamic system that indicates the motions 
in the plane. 

Afterward, we can plot the system trajectories according to its starting point. 



Phase plane 

Extracted from Suel et al., 2006, Nature, 440:545-550 

A biological example: Stress response in B. subtilis and the core competence circuit. 

After, modeling this regulatory network we obtained the following dynamics. 

ComS-nullcline is shown in blue and ComK-nullcline in green, respectively. Grey arrows represent the vector field of 
the dynamical system. The stable steady-state corresponding to vegetative growth is indicated with a black filled 
circle. The saddle and the unstable competent fixed points are indicated with open circles. A set of excursion 
trajectories is shown in pink, with a single representative trajectory of the system highlighted in purple. Initiation 
of excursions in phase space is triggered by noise, and trajectories are determined by the phase space vector field. 



Bifurcation diagram 

• Stability of steady states may change when parameters are altered 
• Points at which the stability of an equilibrium point changes or new steady state 
solutions appear or disappear are called bifurcation points 
• Bifurcation diagrams are used to analyze how the values and the stability of 
equilibrium points depend on a regulatory control parameter, the bifurcation parameter 
• In biological models, bifurcation behaviors include: 

 transcritical bifurcations 
 saddle-node bifurcations 
 Hopf bifurcations 

The first two bifurcations generate so-called switches: the system switches from one 
stable steady state solution to another stable steady state solution (for example switch 
from an inactive form of the system to an active form). 
The Hopf bifurcation gives rise to oscillatory solutions. 
 
Software package are available to draw bifurcation diagrams 



Bifurcation diagram 

Oscillations: among network topologies allowing oscillations : negative feedback oscillator 

Bifurcation diagram System behavior over time Network topology 

S : the signal strength corresponds to the bifurcation parameter 
Starting with S=0, we see that the oscillations decay quickly (region 0) to a stable equilibrium. When 
the strength of the signal S increases to fall into region (1), one obtained sustained oscillations which 
amplitude depends on the signal strength. If the value of S increases again and falls into region (2), the 
oscillations dampen away to the stable steady state.  
There are two Hopf bifurcations (H1) and (H2). 

Dotted line : unstable steady state; solid line stable steady state; (H) = Hopf bifurcation points 

Extracted from a chapter book from Iber and Fengos: Predictive models for cellular signaling networks 



Bifurcation diagram 

Switches: one-way switches 

Bifurcation diagram System behavior over time Network topology 

S : the signal strength corresponds to the bifurcation parameter 
The system has three steady states, two stable and one unstable. If the system is started on the lower branch (low 
signal strength (point 0)), it will follow this branch as S increases (point 1) until the system reaches the saddle-node 
SN1 (point where the stable and unstable steady state branches collide and the two steady states are annihilated). A 
further increase of S results in a jump to a new equilibrium (point 2). If the strength of the signal is reduced, the 
system continues to follow the branch of this new equilibrium (point 4) and doesn’t come back to the previous one. 
The switch is stable and is called a one-way switch 

Dotted line : unstable steady state; solid line stable steady state; (SN) = saddle-node bifurcation points 

Extracted from a chapter book from Iber and Fengos: Predictive models for cellular signaling networks 



Bifurcation diagram 

Switches: toggle switches 

Bifurcation diagram System behavior over time Network topology 

S : the signal strength corresponds to the bifurcation parameter 
Same as the previous one. The system has three steady states, two stable and one unstable. If the system is started 
on the lower branch (low signal strength (point 0)), it will follow this branch as S increases until the system reaches 
the saddle-node bifurcation point SN1 (point where the stable and unstable steady state branches collide and the 
two steady states are annihilated). A further increase of S results in a jump to a new equilibrium (point 3). If the 
strength of the signal is reduced, the system continues to follow the branch of this new equilibrium (point 4). The 
new equilibrium branch meets a second saddle-node bifurcation point SN2. If SN2 lies in the physiological range of 
the bifurcation parameter (here the signal strength), the system can return to the previous steady state point (5). 
In the previous case, SN2 lies out the physiological range of the bifurcation parameter and the system couldn’t return  
to the previous steady state. 

Dotted line : unstable steady state; solid line stable steady state; (H) = (SN) = saddle-node bifurcation points 

Extracted from a chapter book from Iber and Fengos: Predictive models for cellular signaling networks 



A B 

Mutual repression 

According to initial conditions, the 
concentrations of proteins A and B can 
reach two different steady states : 
 
If A is present in high concentration at 
the beginning, the system reaches a 
steady state with a lot of proteins A 
and few proteins B (solid lines 3a) as A 
represses B expression. 
 
If B is present in high concentration at 
the beginning, it is the reverse (dotted 
lines 3a). 
 
It is called a toggle switch as by 
modifying the initial concentration of 
one protein (by modifying its affinity 
for the promoter), the system can 
switch from one steady state to the 
other. 
 Extracted from Guillaume BAPTIST’s PhD manuscript (2012)  
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Mutual repression 
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According to the value of the Hill 
coefficient n, the nullclines are 
different and the number of steady 
state points as well. For n=3, there 
are 3 equilibrium points, two 
stable and one unstable. 
 
Figure 3b, the steady states of A 
concentration are plotted 
according to the degradation rate 
and Hill parameter. We can see the 
bifurcation between the two 
dynamic states.  Extracted from Guillaume BAPTIST’s PhD manuscript (2012)  


