Principe général d'une méthode de distance

Alignement de séquences

Mesure des distances évolutives

CAAACAGCGTT---GGCTCTCTA
AAAATAACACCaacATGCAAATG
AAAACAGCACCaacGTGCAAATG
AAAACAGCACCaacGTGCAAATG

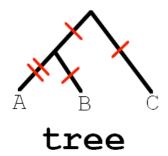
Matrice des distances évolutives entre paires de séquences

Calcul d'un arbre à partir des distances

A B C
A 0
B 3 0
C 4 3 0

distance matrix

Arbre (non enraciné)



La distance d'séparant deux séquences est définie comme le nombre moyen de substitution par site qui s'est produit depuis que ces deux séquences ont divergé de leur ancêtre commun.

Matrice de distance dans le cas de 5 séquences. Elle est symétrique par rapport à la diagonale et la distance d'une séquence à elle-même est nulle.

	1	2	3	4	5
1	0				
2	d_{12}	0			
3	d_{13}	d_{23}	0		
4	d_{14}	d_{24}	d_{34}	0	
5	d ₁₅	d_{25}	d ₃₅	d_{45}	0

<u>Divergence observée ou p-distance</u> : la plus simple

On compte le nombre s de substitutions observées entre deux séquences alignées que l'on rapporte au nombre de sites homologues n alignés, donc : $\boxed{}$

Proportional (p) Distance

DNA Site										
Species	1	2	3	4	5	6	7	8	9	10
I	Α	Т	Α	Т	Α	С	G	Т	Α	Т
Ш	Α	Т	G	Т	Α	С	G	Т	Α	Т
Ш	G	Т	Α	-	Α	С	G	Т	G	С
IV	G	С	G	Т	Α	Т	G	С	Α	С

	I	II	Ш	IV
I	-	0.1	0.4	0.6
II		_	0.5	0.5
Ш			-	0.6
IV				-

facile à calculer mais quand les séquences ne sont pas proches (issues d'organismes distants dans l'évolution), elle sous-estime les distances évolutives.

Cause : l'existence de substitutions multiples. Phénomène plus critique pour les séquences d'acides nucléiques car possèdent un alphabet plus pauvre que les séquences protéiques : quatre lettres au lieu de 20.

Substitutions multiples

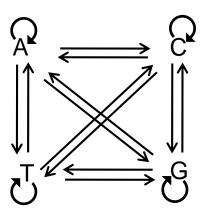
Séquence1 GAAAAG Séquence2 ATGAAG

Type de substitution	Séquence 1	Séquence 2	Nombre de substitutions observé	Nombre de substitutions réel
Substitution unique (simple)	G	G ➤ A	1	1
Substitutions multiples	А	A ➤ C ➤ T	1	2
Substitutions coïncidentes au même site	T ≻ A	T≯G	1	2
Substitutions parallèles	T ≻ A	T ➤ A	0	2
Substitutions convergentes	C≯G≯A	C ➤ A	0	3
Substitution réverse (inverse)	G≯T≯G	G	0	2

Pour tenter de corriger le biais du aux mutations multiples, des hypothèses sont faites sur la façon dont les bases se sont substituées à un locus donné

- > Construction d'un modèle évolutif
- > modéliser par un modèle de Markov en temps continu

Dans les modèles markoviens, l'information utile pour la prédiction du futur est contenue dans l'état présent du processus. Donc, l'état futur d'un site ne dépendra que de son état présents et pas des états passés.



Les substitutions à chaque site sont décrites par une chaîne de Markov dont les états correspondent aux quatre bases nucléotidiques et les probabilités de transitions sont données par les probabilités de passer d'un état à un autre ou de rester dans le même état.

L'évolution d'un site le long d'une branche d'un arbre phylogénétique est décrite par les probabilités de transition p_{ij} d'un état initial i au nœud ancêtre à un état j au nœud fils.

Hypothèses liées au modèle markovien

1. Homogénéité du processus : les probabilités de substitution ne changent pas au cours du temps. Donc même processus applicable le long de toutes les branches de l'arbre.

On peut donc définir :

- \triangleright Le taux de substitution instantané d'une base d'un état i vers un état $j \mu_{ij}$ ($\not= j$).
- \blacktriangleright Le taux de changement instantané d'un nucléotide dans l'état i vers un autre nucléotide λ_i .

Au temps t, on a les probabilités suivantes des 4 bases : A(t), T(t), C(t) et G(t). On veut calculer la probabilité d'observer ces bases après un très court temps d'évolution dt. On a donc le système de quatre équations différentielles linéaires couplées suivant :

$$\begin{split} A(t+dt) &= A(t) - A(t) \lambda_A dt + T(t) \mu_{TA} dt + C(t) \mu_{CA} dt + G(t) \mu_{GA} dt \\ T(t+dt) &= A(t) \mu_{AT} dt + T(t) - T(t) \lambda_T dt + C(t) \mu_{CT} dt + G(t) \mu_{GT} dt \\ C(t+dt) &= A(t) \mu_{AC} dt + T(t) \mu_{TC} dt + C(t) - C(t) \lambda_C dt + G(t) \mu_{GC} dt \\ G(t+dt) &= A(t) \mu_{AG} dt + T(t) \mu_{TG} dt + C(t) \mu_{CG} dt + G(t) - G(t) \lambda_G dt \end{split}$$

$$A(t+dt) = A(t) - A(t)\lambda_{A}dt + T(t)\mu_{TA}dt + C(t)\mu_{CA}dt + G(t)\mu_{GA}dt$$

$$T(t+dt) = A(t)\mu_{AT}dt + T(t) - T(t)\lambda_{T}dt + C(t)\mu_{CT}dt + G(t)\mu_{GT}dt$$

$$C(t+dt) = A(t)\mu_{AC}dt + T(t)\mu_{TC}dt + C(t) - C(t)\lambda_{C}dt + G(t)\mu_{GC}dt$$

$$G(t+dt) = A(t)\mu_{AG}dt + T(t)\mu_{TG}dt + C(t)\mu_{CG}dt + G(t) - G(t)\lambda_{G}dt$$

Ce système peut s'écrire sous la forme matricielle suivante :

$$F(t+dt) = F(t) + F(t)Mdt \qquad \text{avec} \qquad \begin{aligned} F(t+dt) &= \begin{pmatrix} A(t+dt) & T(t+dt) & C(t+dt) & G(t+dt) \end{pmatrix} \\ F(t) &= \begin{pmatrix} A(t) & T(t) & C(t) & G(t) \end{pmatrix} \end{aligned}$$

On en déduit donc la matrice M:

$$\mathbf{M} = \begin{bmatrix} -\lambda_A & \mu_{AT} & \mu_{AC} & \mu_{AG} \\ \mu_{TA} & -\lambda_T & \mu_{TC} & \mu_{TG} \\ \mu_{CA} & \mu_{CT} & -\lambda_C & \mu_{CG} \\ \mu_{GA} & \mu_{GT} & \mu_{GC} & -\lambda_G \end{bmatrix}$$

En effet, si nous réalisons le calcul matriciel suivant, nous obtiendrons le système d'équation ci-dessus

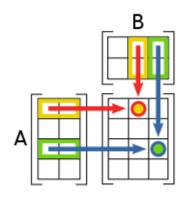
$$\left(A(t+dt) \quad T(t+dt) \quad C(t+dt) \quad G(t+dt)\right) = \left(A(t) \quad T(t) \quad C(t) \quad G(t)\right) + \left(A(t) \quad T(t) \quad C(t) \quad G(t)\right) \times \begin{bmatrix} -\lambda_A dt & \mu_{AT} dt & \mu_{AC} dt & \mu_{AG} dt \\ \mu_{TA} dt & -\lambda_T dt & \mu_{TC} dt & \mu_{TG} dt \\ \mu_{CA} dt & \mu_{CT} dt & -\lambda_C dt & \mu_{CG} dt \\ \mu_{GA} dt & \mu_{GT} dt & \mu_{GC} dt & -\lambda_G dt \end{bmatrix}$$

Parenthèse sur les opérations sur les matrices

Somme de deux matrices :

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} a+e & b+f \\ c+g & d+h \end{pmatrix}$$

Produit de deux matrices:



$$c_{1,2} = a_{1,1}b_{1,2} + a_{1,2}b_{2,2}$$

$$c_{3,3} = a_{3,1}b_{1,3} + a_{3,2}b_{2,3}$$

$$c_{4,1} = a_{4,1}b_{1,1} + a_{4,2} + b_{1,2}$$

Exemple:

$$A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad AB = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \quad BA = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

La matrice M est appelée matrice des taux de substitutions :

$$\mathbf{M} = \{\mu_{ij}\} = \begin{bmatrix} -\lambda_A & \mu_{AT} & \mu_{AC} & \mu_{AG} \\ \mu_{TA} & -\lambda_T & \mu_{TC} & \mu_{TG} \\ \mu_{CA} & \mu_{CT} & -\lambda_C & \mu_{CG} \\ \mu_{GA} & \mu_{GT} & \mu_{GC} & -\lambda_G \end{bmatrix}$$

La différence entre les modèles d'évolution est liée à la définition des μ_{ij}

La matrice M décrit les fréquences relatives des différents types de substitutions, seuls les rapports entre les valeurs de μ_{ij} sont informatifs (par exemple le rapport transitions/tranversions, la fréquence des bases à l'équilibre, etc) et participent à la description du modèle.

Hypothèses liées au modèle markovien

2. Indépendance des sites : les sites évoluent indépendamment les uns des autres. Hypothèse pas vérifiée dans de nombreux cas, notamment pour les ARN structuraux où pour maintenir la structure secondaire, il y a apparition de mutations compensatrices (coévolution des sites).

3. Uniformité du processus : tous les sites d'une séquence suivent le même processus, c'est-à-dire que les probabilités et taux de substitutions sont applicables à tous les sites. Conséquence, on suppose que les sites évoluent à la même vitesse. On sait que cette hypothèse est fausse mais elle utilisée dans la plupart des modèles d'évolution.

Des améliorations dans les modèles ont été proposées pour prendre en compte l'existence de vitesses d'évolution différentes. La plus courante est l'utilisation de la distribution Gamma.

Hypothèses liées au modèle markovien

4. Stationnarité: liée à l'hypothèse d'homogénéité, les taux d'évolution μ_{ij} sont constants au cours du temps pour l'ensemble des lignées. La matrice M s'applique donc en tout point de l'arbre. Si les μ_{ij} sont positifs, le processus markovien est dit stationnaire. Il existe alors, pour la chaîne de Markov associée, une distribution $\Pi = \{\pi_i\}$ qui est dite stationnaire. Lorsque $t \to \infty$, les valeurs des fréquences des quatre bases tendent vers cette distribution. Ces valeurs correspondent aux compositions en bases à l'équilibre, soit les proportions de A, T, C et G attendues après un temps d'évolution infini.

Pas une contrainte absolue et certains modèles d'évolution non stationnaires ont été proposé.

5. Réversibilité : signifie que quand l'équilibre est atteint, la quantité de changement de l'état j vers l'état j est égale à la quantité de changement de l'état j vers l'état j. On a $\pi_i \, \mu_{ij} = \pi_j \, \mu_{ji}$.

Permet de simplifier les calculs, car les 12 paramètres non diagonaux de la matrice M peuvent être décrits par 9 paramètres, les 6 taux d'interchangeabilité (μ_{ij}) et trois fréquences de bases à l'équilibre car $\sum_i \pi_i = 1$

$$\mathbf{M} = \{\mu_{ij}\} = \begin{bmatrix} -\lambda_A & \mu_{AT} & \mu_{AC} & \mu_{AG} \\ \mu_{TA} & -\lambda_T & \mu_{TC} & \mu_{TG} \\ \mu_{CA} & \mu_{CT} & -\lambda_C & \mu_{CG} \\ \mu_{GA} & \mu_{GT} & \mu_{GC} & -\lambda_G \end{bmatrix}$$

$$\mu_{AT} = \mu_{TA}$$

$$\mu_{AC} = \mu_{CA}$$

$$\mu_{AG} = \mu_{GA}$$

$$\mu_{CT} = \mu_{TC}$$

$$\mu_{CG} = \mu_{GC}$$

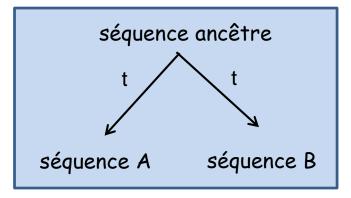
$$\mu_{GT} = \mu_{TG}$$

Distance évolutive entre deux séquences

Le nombre de substitution ayant eu lieu pendant un intervalle de temps t est donné par la multiplication du taux d'évolution global λ par t. Sous l'hypothèse de la stationnarité on a : $\lambda = \sum_i \pi_i \lambda_i$ avec $\lambda_i = \sum_{i \neq j} \mu_{ij}$

Quand on compare deux séquences homologues, le temps qui les sépare est

non de t mais de 2t.



La distance évolutive séparant deux séquences est donc :

$$d = 2\sum_{i} \pi_{i} \lambda_{i} t$$

<u>Modèle de Jukes et Cantor (abrégé JC69)</u>

- Modèle markovien le plus simple mais vision simplificatrice de l'évolution
- > toutes les substitutions sont équiprobables donc un seul taux de substitution instantané α pour chacun des changements possibles (tous les μ_{ij} = α) et un seul taux de conservation global instantané $1-3\alpha$. La matrice M des taux de changements est donc simplifiée. On a :

$$M = \begin{bmatrix} -\lambda & \alpha & \alpha & \alpha \\ \alpha & -\lambda & \alpha & \alpha \\ \alpha & \alpha & -\lambda & \alpha \\ \alpha & \alpha & \alpha & -\lambda \end{bmatrix} \quad \text{avec } \lambda = 3\alpha$$

La matrice des probabilité de substitution P(t) peut donc s'écrire :

$$P(t) = \begin{bmatrix} q(t) & p(t) & p(t) & p(t) \\ p(t) & q(t) & p(t) & p(t) \\ p(t) & p(t) & q(t) & p(t) \\ p(t) & p(t) & p(t) & q(t) \end{bmatrix} \quad \begin{array}{l} \text{avec:} \\ q(t) \text{ probabilité qu'après un temps } t \text{ le nucléotide reste} \\ \text{inchangé} \\ p(t) \text{ probabilité qu'après un temps } t \text{ il se soit substitué en} \\ \text{un autre (passage de l'état } i \text{ à l'état } j). \\ \end{array}$$

α

Modèle de Jukes et Cantor (abrégé JC69)

Pour calculer la distance entre deux séquences, il faut que l'on trouve une relation entre d et la probabilité d'observer une substitution à un site qui est donnée par la distance observée ou p-distance.

La démonstration à la fin du document pour le parcours P4 et les curieux....

<u>la distance de Jukes et Cantor est donnée par :</u>

$$d = -\frac{3}{4} Log \left(1 - \frac{4}{3} p_{dist} \right)$$

Un facteur correcteur est donc apporter à la p-distance p_{dist}

Quand $p_{dist} = \frac{3}{4} d \rightarrow \infty$ (Log 0 pas défini). Donc ce modèle n'est pas utilisable pour des séquences dont la distance observée est supérieure à 75%.

Modèle de Kimura à deux paramètres (K80)

- > Modèle moins simplificateur et biologiquement plus réaliste car il est observé que la fréquence des transitions est plus élevée que celle des transversions.
- les substitutions se produisent suivant deux taux distincts, l'un pour les transitions, l'autre pour les transversions, les transitions étant plus fréquentes (transition = $A \leftarrow B$ ou $T \leftarrow C$). On a donc la matrice des taux de changements M suivante :

$$A \quad T \quad C \quad G$$

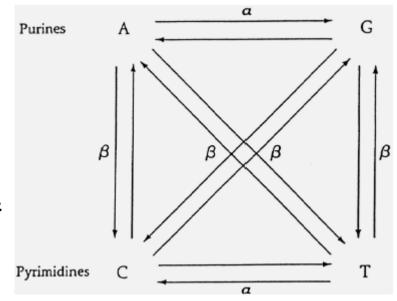
$$A = T \quad \beta \quad \beta \quad \alpha \quad \beta$$

$$M = T \quad \beta \quad -\lambda \quad \alpha \quad \beta \quad \beta$$

$$C \quad \beta \quad \alpha \quad -\lambda \quad \beta \quad \beta$$

$$G \quad \alpha \quad \beta \quad \beta \quad -\lambda \quad \beta$$

avec α taux de transitions et β taux de tranversions et λ le taux instantané de changement pour une base quelconque λ = 2β + α



Distance de Kimura à deux paramètres :

$$d = -\frac{1}{2}Log(1-2p-q) - \frac{1}{4}Log(1-2q)$$

Avec:

- p fréquence observée des transitions
- q fréquence observée des transversions

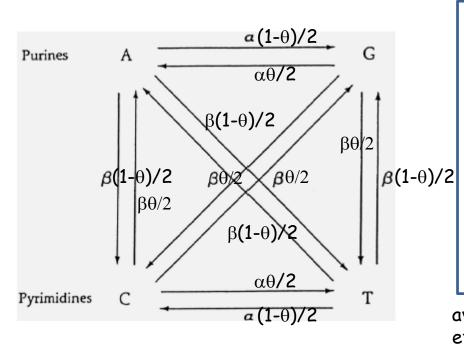
Modèle de Tamura (T92)

Les modèles précédents JC69 et K80 imposent que les fréquences des bases à l'équilibre soient toutes égales à $\frac{1}{4}$, donc que le taux global de GC soit égal à $\frac{1}{2}$. Or ceci est rarement vérifié sur les séquences réelles. Des modèles alternatifs ont été proposés pour rendre compte de cette réalité biologique.

 \triangleright Le modèle de Tamura est une extension du modèle K80 en intégrant un paramètre supplémentaire θ représentant la fréquence de GC de la ou des séquence(s) considérée(s). Soit :

$$\pi_{GC} = \theta$$

Modèle de Tamura (T92)



$$\pi_{GC} = \theta$$

$$\pi_{G} = \pi_{C} = \frac{\theta}{2}$$

$$\pi_{A} = \pi_{T} = \frac{(1 - \theta)}{2}$$

La matrice des taux de changements M devient :

avec α taux de transitions et β taux de tranversions et λ le taux instantané de changement qui maintenant est fonction de la nature de la base (AT ou GC):

$$\lambda_A = \lambda_T = \beta (1 - \theta)/2 + \beta \theta/2 + \alpha \theta/2 = (\beta + \alpha \theta)/2$$
$$\lambda_C = \lambda_G = \beta (1 - \theta)/2 + \alpha (1 - \theta)/2 + \beta \theta/2 = (\beta + \alpha(1 - \theta))/2$$

Modèle de Tamura (T92)

La distance entre deux séquences est donnée par :

$$d = -hLog(1 - \frac{p}{h} - q) - \frac{1}{2}(1 - h)Log(1 - 2q)$$
• h = 2\theta(1 - \theta)
• p fréquence observée des transitions

Avec:

- q fréquence observée des transversions

Modèle de Tamura et Nei (TN93)

 \succ Ce modèle comprend 6 paramètres et est le modèle réversible le plus général dont l'expression analytique des probabilités est connue. Dans ce modèle, on distingue le taux de transition en fonction qu'il s'effectue entre deux purines (A<->G), noté α_R , ou entre deux pyrimidines (T<->C), noté α_Y . Le taux de tranversion reste β .

$$A \qquad T \qquad C \qquad G$$

$$A \qquad A \qquad \beta \pi T \qquad \beta \pi C \qquad \alpha R \pi G$$

$$M = T \qquad \beta \pi_A \qquad -\lambda_T \qquad \alpha Y \pi C \qquad \beta \pi_G$$

$$C \qquad \beta \pi_A \qquad \alpha_Y \pi_T \qquad -\lambda_C \qquad \beta \pi_G$$

$$G \qquad \alpha_R \pi_A \qquad \beta \pi_T \qquad \beta \pi_C \qquad -\lambda_G$$

Ce modèle fait donc apparaître les fréquences π_i des bases à l'équilibre (calculée de façon empirique à partir de la moyenne des fréquences en bases des deux séquences étudiées)

Pour les autres modèles voir :

Concepts et méthodes en phylogénie moléculaire, Guy Perriére et Céline Brochier-Armanet, collection IRIS, Springer-Verlag France Inferring Phylogenies, J. Felsenstein, Sinauer Associates Inc. Publishers Sunderland, Massachutsetts

Distances synonymes et non synonymes

- Hypothèses des modèles précédents: Tous les sites évoluent indépendamment selon le même processus.
- Problème: dans les gènes protéiques, il existe deux classes de sites avec des taux d'évolution très différents.
 - o substitutions non synonymes (changent l'acide aminé): lent
 - o substitutions synonymes (ne changent pas l'acide aminé): rapide
- > Solution: calculer <u>deux</u> distances évolutives
 - \circ K_A ou d_N = distance non-synonyme = nbr. substitutions non-synonymes / nbr. sites non-synonymes
 - K_s ou d_s = distance synonyme
 = nbr. substitutions synonymes / nbr. sites synonymes

Si les séquences sont soumises à une sélection purificatrice, on attend un déficit de substitutions non synonymes : $d_N/d_S < 1$

Si les séquences sont soumises à une sélection positive, on attend un excès de substitutions non synonymes : $d_N/d_S > 1$

Si les séquences évoluent de façon neutre on aura : $d_N \approx d_S$

> Séquences protéiques fréquemment utilisées en phylogénie moléculaire car plus appropriées quand les analyses comportent des séquences issues de lignées séparées par de grandes distances évolutives ou quand les séquences évoluent rapidement (au niveau ADN perte du signal phylogénétique car les sites sont dits saturés, i.e., ont subi de nombreuses substitutions multiples).

> Egalement plusieurs modèles pour estimer la distance entre deux séquences

Modèle de Poisson

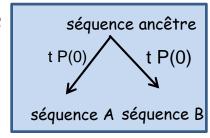
- > Première estimation meilleure que la p-distance repose sur le concept de distribution de Poisson.
- > Hypothèses:
 - > tous les sites évoluent indépendamment et suivant un même processus
 - > toutes les substitutions sont équiprobables
 - > le taux de réversion est négligeable

Soit λ le taux de substitution à un site donné, alors λ t correspond au nombre de substitutions s'étant produite au cours du temps t et la probabilité P(k) d'avoir k substitutions à un site (k={0,1,2,3,...} est donnée par la distribution de Poisson :

$$P(k) = e^{-\lambda t} \frac{\left(\lambda t\right)^k}{k!}$$
 P(0) = $e^{-\lambda t}$ = proba aucun changement au temps t

soit p la probabilité d'observer une substitution entre deux séquences et q=1 - p la probabilité d'observer deux résidus identiques

 $q = P(0)^2 = e^{-2\lambda t}$ et d = $2\lambda t$ (d distance entre les deux séquences)

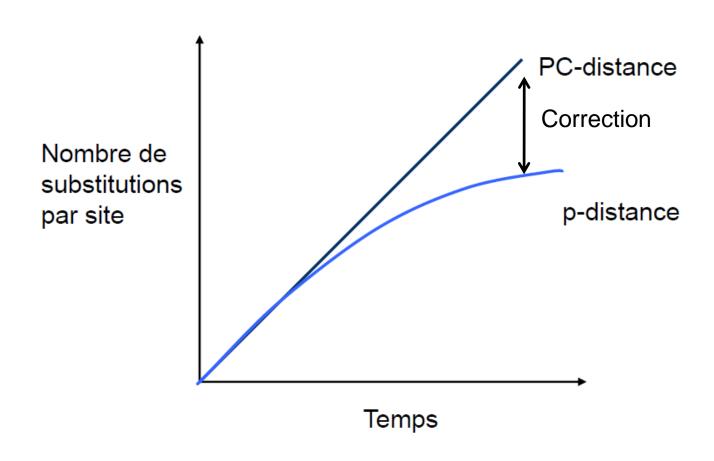


$$q = 1 - p = e^{-d}$$

$$d = -Log(1-p)$$

Valeur de p estimée par la p-distance

Relation entre la p-distance et la distance corrigée de Poisson



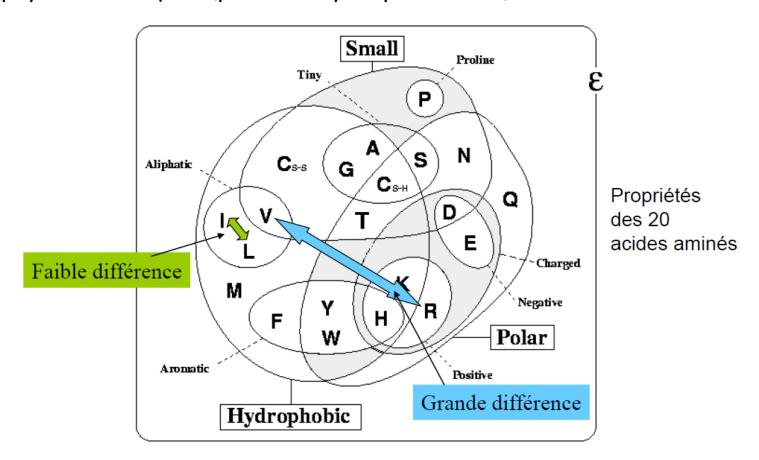
Modèle de Poisson

- > Cependant vision très simplificatrice car en particulier :
 - > taux de substitutions plus ou moins élevé en fonction de l'importance fonctionnelle du site
 - > présence aussi de substitution parallèle et de réversion donc on va sous-estimer la distance entre deux séquences
 - > ne peut être utilisée que si séquences globalement peu divergentes

Donc autres modèles ont été développés.

Modèle PAM et assimilé

> Il est vite apparu que les substitutions entre acides aminés étaient d'autant plus fréquentes que ces acides aminés étaient proches en terme de propriétés physico-chimiques (polarité, hydrophobicité...)



Modèle PAM et assimilé

Comment mesurer la similarité entre deux acides aminés?

Méthode qui a été retenue : estimer en comparant des ensembles de séquences protéiques la fréquence de substitution d'un acide aminé en un autre → obtention d'une matrice 20x20 dont chacune des cases contient la valeur numérique attribuée à la paire d'acide aminé en question.

Première matrice construite par Dayhoff *et al.* En 1978 et appelée PAM pour Point Accepted Mutation : matrice empirique construite directement à partir de données issues de 71 familles de séquences homologues (environ 1300 séquences). Elle rend compte de deux processus :

- > l'apparition de substitutions
- > leur passage au travers du crible de la sélection.

Hypothèse : processus d'évolution des protéines suit un modèle markovien de substitution d'ordre 0.

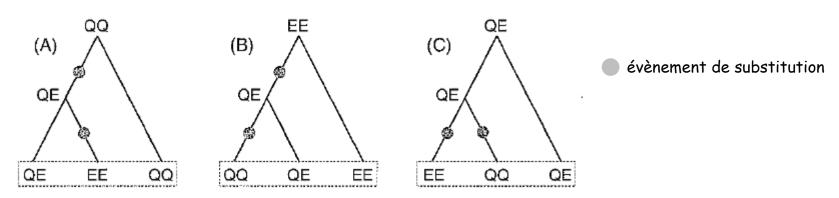
Choix des séquences : très proches (minimum 85% d'identité entre chaque paire de séquences de manière à éviter la présence de substitutions multiples).

Principes généraux de la construction de la PAM

Comptage du nombre de substitution pour chaque paire d'acides aminés :

Procédure:

• pour chaque famille alignement multiple des séquences et construction d'un arbre au moyen de la méthode du maximum de parcimonie qui permet de reconstruire les séquences ancêtres à chaque nœud de l'arbre.



Extrait de Perrière et Brochier-Armanet (2010) Concepts et méthodes en phylogénie moléculaire.

• Alignement de chaque séquence avec sa séquence ancêtre et comptage du nombre n_{ij} de substitution de l'acide aminé i vers l'acide aminé j et du nombre de conservations : obtention de la matrice 20×20 de résultats brutes qui est symétrique car on fait l'hypothèse de réversabilité n_{ij} = n_{ji} .

Exemple d'une matrice de cumul des mutations acceptées (x10)

```
ala arg asn asp cys gln glu gly his ile leu lys met phe pro ser thr trp tyr val
Α
R
   30
  109
        17
  154
         0 532
   33
        10
                  0
            50
      120
  266
             94
                831
                       0 422
        10 156 162
                           30 112
  579
       103 226
                 43
                      10
                         243
                               23
                                    10
   66
        30
            36
                               35
                 13
Ι
            37
                           75
                               15
L
        17
                                    17
                                            253
       477
           322
                         147
                              104
                                             43
                 85
                                    60
                                                  39
                           20
        17
                                                 207
                                                       90
   20
                            0
                               17
                                    20
                                            167
  345
        67
            27
                 10
                      10
                           93
                               40
                                    49
                                         50
                                                  43
                                                       43
  772 137
           432
                 98
                     117
                           47
                               86 450
                                             20
                                                  32
                                                     168
                                                                40 269
                                         26
  590
        20
           169
                 57
                      10
                           37
                               31
                                    50
                                            129
                                                  52
                                                     200
                                                                10
                                                                     73 696
        27
            3
                     0
                            0
                               0
                                              0
                                                  13
                                                                10
                                                                         17
                                                      0
   20
         3
            36
                      30
                               10
                                             13
                                                  23
                                                       10
                                                               260
                                                                         22
                                     0
v 365
             13
                      33
                           27
                               37
        20
                                            661
                                                 303
                                                                10
                                                                     50
                                                                          43
                                                                                       17
```

Principes généraux de la construction de la PAM

Calcul de la mutabilité de chaque acide aminé i

La mutabilité est défini comme le rapport entre le nombre de substitutions affectant l'acide aminé i et le nombre d'acide aminé i observé dans les données :

$$m_i = \frac{\sum_{i \neq j} n_{ij}}{\sum_{j} n_{ij}}$$

Prise en compte du temps : calcul de la matrice de probabilité PAM1

Matrice particulière car correspond à un intervalle de temps t au cours duquel les acides aminés auront muté. La PAMk correspond à un intervalle de temps ou k% des acides aminés examinés auront muté. La matrice « de base » construite par Dayhoff correspond à la PAM1 dans laquelle seulement 1% des acides aminés étudiés auront mutés. Le facteur correctif ρ prenant en compte le temps a été calculé par Dayhoff de telle manière que les fréquences de conservation des acides aminés (termes diagonaux de la matrice) représentent une conservation de 99%. Les termes de la PAM1 sont donnés par :

$$p_{ij_{i\neq j}} = \rho m_i \frac{n_{ij}}{\sum_{i\neq j} n_{ij}}$$
 et $p_{ii} = 1 - \rho m_i$

Principes généraux de la construction de la PAM

> famille de matrices : construction des PAMK

Après le calcul de la PAM1 on a une estimation des fréquences de substitution entre paire d'acides aminé pour une unité de temps telle que l'on a 1% des sites mutés soit une proportion de substitution/site qui est égale à 0.01.

Cependant, cette matrice ne peut pas être utilisée pour calculer des distances entre séquences plus divergentes. Mais comme le processus d'évolution des séquences protéiques est considéré comme markovien, il est donc possible de calculer toutes les matrices PAMk, k étant exprimé en unité PAM. Par exemple si k = 100, cela veut dire que 100% des sites sont mutés et que l'on a donc une distance d = 1 substitution/site. La PAM100 est égale à (PAM1)¹⁰⁰.

On peut calculer δ la proportion attendue d'acides aminés mutés dans nos données pour une PAM particulière car on a la relation suivante :

$$\delta = \rho \sum_{i} \pi_{i} m_{i}$$
 avec : ρ le facteur d'échelle de la PAM, π_{i} la fréquence à l'équilibre de l'acide aminé i et m_{i} sa mutabilité

 δ ne dépend que de ρ car les π_i et les m_i sont estimés à partir des données.

Exemple d'une matrice PAM : PAM250

```
S - small hydrophilic
N
                       2
D
                                    N- acid, acid amide, hydrophylic
                       1 3 4
                                    6
                                              H - basic
R
                                      6
                                                          V - small hydrophobic
Y
                                                           7 10
                                                                    F- aromatic
                                                              0 17
                                    H
```

Modèle PAM : Calcul d'une distance PAM

Pour une matrice PAM donnée, on peut donc calculer δ la proportion attendue de sites qui ont été substitués entre deux séquences. δ correspond à la p-distance attendue.

On va choisir la PAM qui fournira une valeur de δ égale à la p-distance observée.

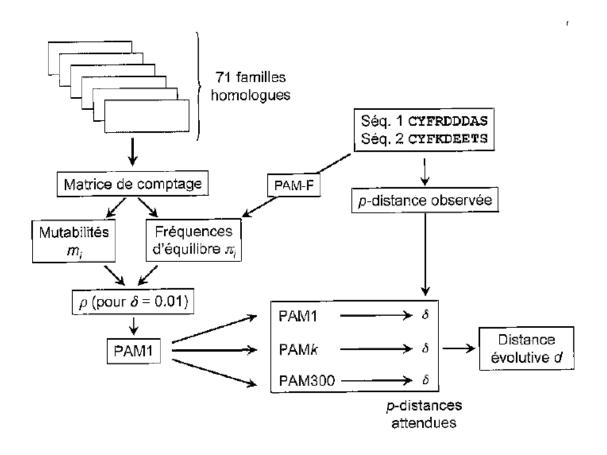
Connaissant alors la PAM, on pourra calculer la distance évolutive entre nos deux séquences.

Si la composition en acides aminés (les π_l) des séquences de notre jeu de données est différente de la composition de celles utilisées par Dayhoff pour construire la PAM1, on peut établir cette PAM1 directement sur notre jeu de données en utilisant les mêmes étapes que celles décrites précédemment. On en déduit les différentes PAMk. On notera alors cette PAM, PAM-F lors du calcul de la distance évolutive entre deux séquences.

<u>Problème du modèle PAM</u>: construit à partir d'un jeu de données limité. Mise à jour par Jones *et al.* En utilisant un nombre de protéines beaucoup plus important (16300) mais en conservant une approche similaire.

Modèle et matrices correspondantes connus sous le nom de JTT (Jones, Taylor et Thronton).

Procédure générale de construction de la PAM1 et calcul d'une distance PAM



Extrait de Perrière et Brochier-Armanet (2010) Concepts et méthodes en phylogénie moléculaire.

Même principe si on utilise le modèle JTT

Modèle WAG

Problème avec le modèle PAM ou JTT : utilisation de séquences très similaires pour estimer les taux de substitutions. Pour séquences distantes inférés.

Utilisation du maximum de vraisemblance pour estimer les taux de substitutions des acides aminés.

Premières tentatives, modèles adaptés :

- aux séquences mitochondriales de vertébrés (mtREV).
- aux séquences mitochondriales de mammifères (mtMAM).
- aux séquences chloroplastiques (cpREV).

Modèle plus général proposé par Whelan et Goldman : modèle WAG

- utilise 182 familles de protéines homologues (3905 séquences).
- utilisation du modèle WAG permet d'obtenir des arbres dont la vraisemblance est significativement supérieure à ceux obtenus avec les modèles PAM ou JTT
- faiblesse du modèle : hypothèse d'uniformité (même vitesse d'évolution pour tous les sites)

Modèle proposé par Le et Gascuel : modèle LG extension du modèle WAG

- prise en compte de différentes vitesses d'évolution pour les sites
- construit à partir de 3912 familles comprenant au total 49637 séquences

Correction des distances pour différentes vitesses d'évolution

Les différents modèles évolutifs présentés font l'hypothèse de l'uniformité, or les contraintes fonctionnelles engendrent des taux d'évolution (r) différents selon les sites. Il a été démontré que ce taux r est modélisable par une loi G amma (séquences nucléiques ou protéiques).

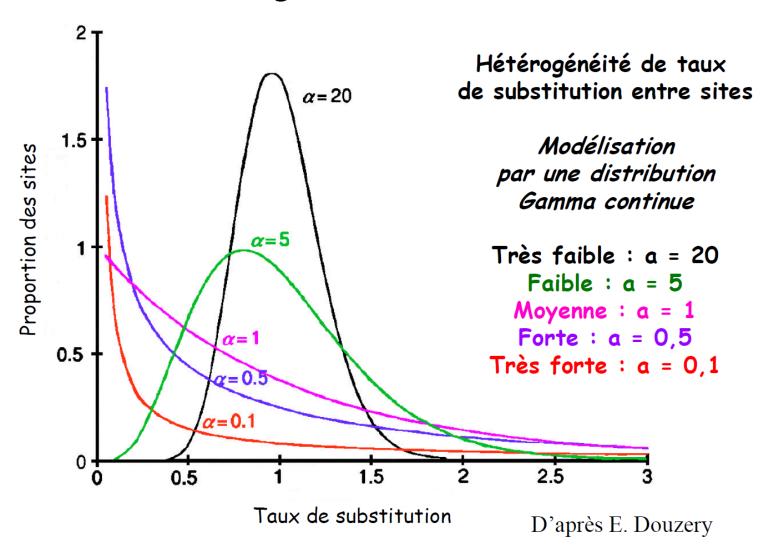
Choix de la distribution Gamma : pas de justification biologique mais commodité mathématique car la forme de la distribution ne dépend que d'un seul paramètre α .

Si $\alpha > 1 \rightarrow$ forme de cloche. Plus α est grand, plus la variance de r diminue traduisant une faible hétérogénéité des taux de substitutions par rapport à la moyenne. Si $\alpha \rightarrow \infty$, alors il n'y a pas de différences de taux et l'hypothèse d'uniformité peut être appliquée.

Si $\alpha \le 1 \to \text{forme de L. Nombre important de sites ont un } r$ proche de 0 (sites quasiment invariants). Donc forte hétérogénéité dans les taux d'évolution.

Détermination de α réalisée sur le jeu de données. Distribution Gamma est approximée après discrétisation (nombre de catégories pour r variant de 4 à 8).

Distribution gamma



Correction des distances pour différentes vitesses d'évolution

La plupart des modèles vus précédemment peuvent intégrer dans leur calcul de la distance une correction par la loi Gamma.

Exemple séquences nucléiques : le modèle de Jukes et Cantor (JC89) qui s'identifie par $\overline{\text{JC89+}\Gamma}$

Modèle JC89
$$d = -\frac{3}{4}Log\left(1 - \frac{4}{3}p_{dist}\right)$$

$$d = \frac{3}{4}\alpha\left[\left(1 - \frac{4}{3}p_{dist}\right)^{-1/\alpha} - 1\right]$$

Exemple séquences protéiques : le modèle de Poisson (Poisson+ Γ)

- α = 2.25 distance peu différentes de celles obtenues avec le modèle PAM
- α = 2.4 distance peu différentes de celles obtenues avec le modèle JTT

Correction des distances pour différentes vitesses d'évolution

Exemple de l'estimation du taux de substitution par site : chaîne α hémoglobine

PC+

	P-distance	PC-distance	Gamma-distance
Human/cow	0.121	0.129	0.134
Human/kangaroo	0.186	0.205	0.216
Human/carp	0.486	0.665	0.789

Choix des modèles évolutifs

Choix d'un modèle évolutif

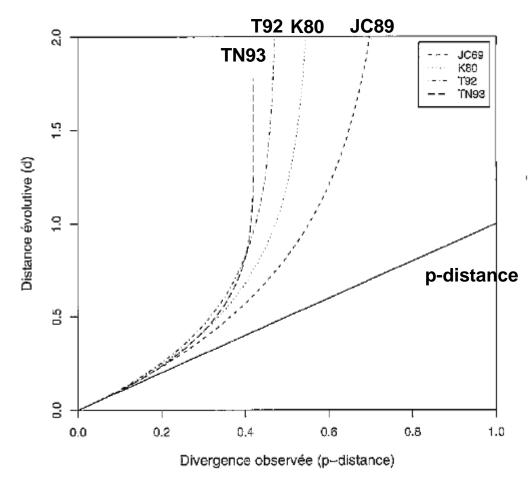
Des méthodes permettant de tester l'adéquation du modèle aux données existent mais souvent le choix du modèle est du fait de l'utilisateur et de ses connaissances.

Quelques règles simples :

- > construction d'une phylogénie à partir de gènes protéiques :
 - séquences très distantes dans l'évolution : utilisation des séquences protéiques.
 - séquences proches dans l'évolution : utilisation des séquences acides nucléiques voir travailler uniquement sur les positions synonymes.
- > Utilisation de séquences nucléiques : grand nombre de modèles
 - critère important : le degré de divergence entre les séquences.
 - pas toujours pertinent d'utiliser les modèles avec beaucoup de paramètres :
 - ❖ si les séquences sont courtes ou trop similaires les estimations des paramètres sont mauvaises.
 - modèle arrivant à saturation plus rapidement (cf. figure suivante) donc si séquences très divergentes, fréquemment impossible de calculer les distances.
 - donc si même résultat avec deux modèles, utiliser le plus simple car la variance de la distance augmente avec le nombre de paramètres.
 - application de la correction Gamma que si nombre de sites utilisés important car nécessite d'estimer un paramètre supplémentaire (la forme α de la distribution).

Choix d'un modèle évolutif

Comparaison des différents modèles évolutifs de séquences d'ADN



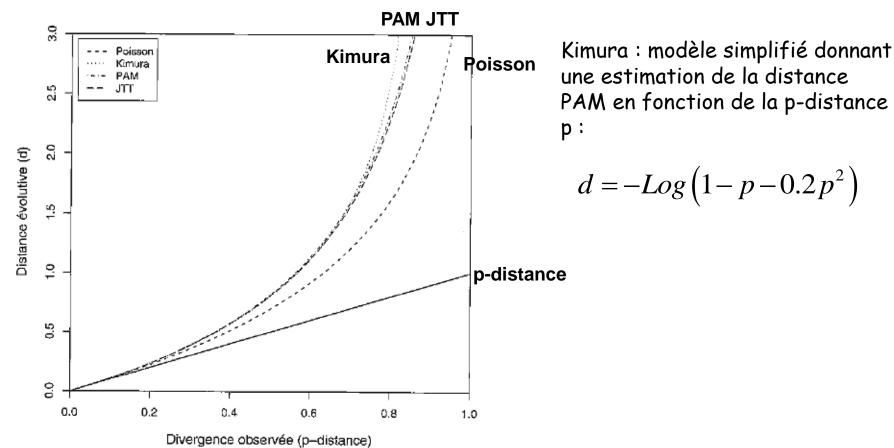
Extrait de Perrière et Brochier-Armanet (2010) Concepts et méthodes en phylogénie moléculaire.

Paramètres fixés : taux $GC(\theta) = 0.3$ $\pi_A = 0.3$, $\pi_T = 0.4$, $\pi_C = 0.2$ et $\pi_G = 0.1$ $\kappa = \text{transition/transversion} = 4$

- d ≤ 0.1 tous les modèles : même résultat (on peut utiliser modèle simple)
- 0.5 > d > 0.1 on peut utiliser JC89 ou K80, K80 préférable si séquence κ >5
- 1 > d > 0.5 utilisation de modèles avec nombre de paramètres plus important. Les plus simples sous-estiment le nombre de substitutions (distance évolutive).
- d > 1 pour beaucoup de paires de séquences, prudence sur la fiabilité de l'arbre. Eliminer les sites saturés manuellement ou avec méthodes appropriées.

Choix d'un modèle évolutif

- > Utilisation de séquences protéiques
 - modèles les plus performants étant ceux bâtis sur le plus grand nombre de données (car estimation des taux de substitutions pour tous les modèles).
 - modèles WAG et LG supérieurs aux modèles PAM et JTT.
 - si distances évolutives faibles, on peut utiliser le modèle de Poisson ou de Kimura car aussi bons résultats. Donc si même résultat avec deux modèles, utiliser le plus simple car plus rapide.



Choix des modèles évolutifs

Grand nombre de modèles d'évolution dont certains très complexes et intégrant un grand nombre de paramètres.

<u>Problème</u>: la précision de l'estimation des paramètres peut être mauvaise notamment quand peu de données (nombre de séquences et/ou de sites).

- > Primordial de choisir le modèle qui est le plus en adéquation avec les données.
- > Etape indispensable à toute analyse phylogénétique rigoureuse.

Les tests de vraisemblance sont des méthodes bien adaptées qui permettent non seulement de déterminer les hypothèses qui expliquent le mieux le jeu de données mais aussi de comparer des hypothèses.

- ❖ Test du rapport de vraisemblance appelé LRT pour Likelihood Ratio Test
- * Akaike Information Criterion (AIC).

Likelihood Ratio Test

Nécessite que les modèles que l'on veut tester soit imbriqués (du plus simple au plus complexe)

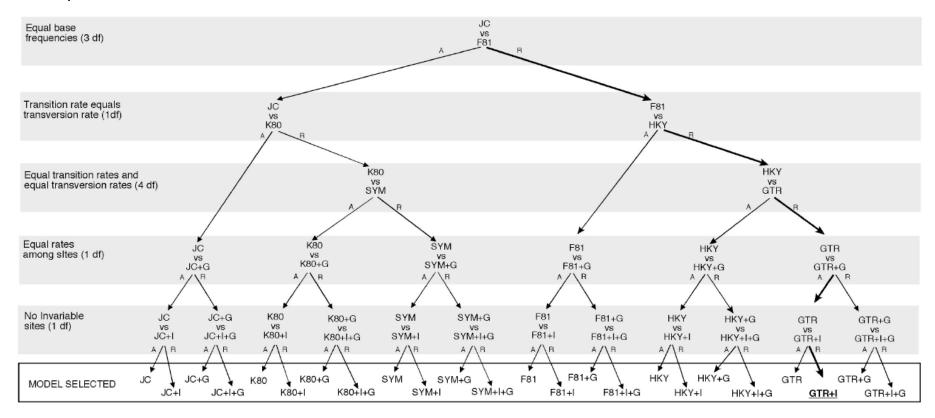


Figure 17. Example of a particular forward hierarchy of likelihood ratio tests for 24 models. At any level the null hypothesis (model on top) is either accepted (A) or rejected (R). In this example the model selected is GTR+1. (Extrait du manuel de JModelTest)

Likelihood Ratio Test

Ce test est utilisé quand l'on désire comparer deux arbres qui ont la même topologie mais qui ont été obtenus avec des modèles d'évolution différents. On compare deux modèles :

- Le modèle M_o (le plus simple, *i.e.* qui a le plus petit nombre de paramètres k_o) qui correspondra à l'hypothèse nulle H0.
- Le modèle M_1 (le plus complexe, k_1 paramètres, k_1 > k_0) qui correspondra à l'hypothèse alternative H1.

Le rapport de vraisemblance est donné par : $\Delta = 2 \ln \left[\frac{L(\Theta_1)}{L(\Theta_0)} \right] = 2 \left[\ln L(\Theta_1) - \ln L(\Theta_0) \right]$

 Δ suit une loi du χ^2 à k_1 - k_0 d.d.l., soit le nombre de paramètre du modèle M_1 à contraindre pour se ramener au modèle M_0 . Le modèle nul sera rejeté si Δ est supérieur au niveau de confiance fixé par l'utilisateur

Critiques majeures de ce test :

- la sélection des modèles testés dépend du parcours de l'arbre hiérarchique. Par exemple, si le modèle le plus adapté est le F81+I+G, il ne pourra pas être testé si à l'étape précédente on a rejeté le modèle F81 au profit du modèle HKY. Pour palier à ce problème, on peut faire des tests dynamiques.
- le choix du modèle se fait sur la base d'un arbre dont la topologie est fixée. Si celle-ci n'estime pas bien l'histoire évolutive des données, les vraisemblances obtenues peuvent être irréalistes. Or le choix du modèle précède cette reconstruction.

Akaike Information Criterion (AIC)

C'est un estimateur qui correspond à la minimisation de la distance attendue entre un modèle vrai et son estimation. Les modèles correspondant aux valeurs minimales de l'AIC sont considérés comme les plus appropriés pour la reconstruction. Une même topologie de référence doit être utilisée pour tester les différents modèles. L'AIC permet de tester des modèles sans que ceux-ci soient imbriqués.

$$AIC = -2 \ln L(\Theta) + 2k$$

k = nombre de paramètres libres du modèle

L'AIC apparaît biaisé pour les modèles riches en paramètres comparativement au LRT.

Si la taille n du jeu de données est petite comparée au nombre de paramètres k du modèle (n/k < 40) l'utilisation de l'AIC corrigé AICc est recommandée.

$$AIC_c = AIC + \frac{2k(k+1)}{n-k-1}$$

Deux logiciels: JModelTest pour les séquences d'acides nucléiques et ProtTest

Démonstration du calcul de la distance de Jukes et Cantor

Modèle de Jukes et Cantor (abrégé JC69)

Pour calculer la distance entre deux séquences, il faut que l'on trouve une relation entre d et la probabilité d'observer une substitution à un site qui est donnée par la distance observée ou p-distance.

On a :
$$q(t) + 3p(t) = 1$$

Il est possible de résoudre ce système en diagonalisant la matrice M afin d'obtenir une solution analytique pour les valeurs de p(t). Mais comme le modèle est simple, autre solution.

Soit $q(t+\Delta(t))$ la probabilité qu'un nucléotide quelconque présente le même état i après un intervalle de temps $t+\Delta(t)$. Deux possibilités :

- > soit au temps t la base considérée était dans l'état i (probabilité q(t)), elle restera dans cet état avec un taux de conservation $1-\lambda$ (or $\lambda = 3\alpha$) donc avec un taux égal à $1-3\alpha$. Donc la probabilité de ce scénario est $q(t)(1-3\alpha)$.
- > soit au temps t la base est dans un autre des trois états possibles (probabilité p(t)), elle pourra être substituée dans l'état i avec un taux de 3α . La probabilité associée étant $p(t)(3\alpha)$.

Modèle de Jukes et Cantor (abrégé JC69)

$$q(t+\Delta(t)) = (1-3\alpha)q(t) + 3\alpha p(t) = (1-3\alpha)q(t) + \alpha [1-q(t)]$$
 car $3p(t) = 1-q(t)$

A partir de cette équation, il est possible d'exprimer la probabilité $q(\Delta t)$ que la base considérée soit dans l'état i après un intervalle de temps Δt :

$$\Delta q(t) = q(t+\Delta(t)) - q(t) = q(t) - 3\alpha q(t) + \alpha - \alpha q(t) - q(t)$$

$$\Delta q(t) = -4\alpha q(t) + \alpha$$

Si $\Delta(t) \rightarrow 0$, on peut en déduire l'équation différentielle :

$$\frac{dq(t)}{dt} = -4\alpha q(t) + \alpha$$

Équation différentielle linéaire du premier ordre

$$q'(t) + 4\alpha q(t) = \alpha$$

Modèle de Jukes et Cantor (abrégé JC69)

$$q'(t) + 4\alpha q(t) = \alpha$$

On résout d'abord l'équation sans second membre :
$$\frac{dq(t)}{dt} + 4\alpha q(t) = 0$$

On se ramène à une équation à variables séparables :
$$\frac{dq(t)}{q(t)} = -4\alpha dt$$

On intègre :
$$\int \frac{dq(t)}{dt} = \int -4\alpha dt$$
 Log $\left| \frac{q(t)}{C} \right| = -4\alpha t$

On peut écrire
$$e^{Log\left|\frac{q(t)}{C}\right|} = \frac{q(t)}{C} = e^{-4\alpha t}$$

soit
$$q(t) = Ce^{-4\alpha t}$$

Modèle de Jukes et Cantor (abrégé JC69)

Recherche d'une solution particulière :

On pose q(t) = a car le second membre est une constante (α) et donc q'(t) (dérivée de q(t)) est égal à 0.

On a donc :
$$4\alpha a = \alpha$$
 soit $a = \frac{1}{4}$

Solution générale de l'équation différentielle (solution sans second membre + solution particulière) : $q(t) = Ce^{-4\alpha t} + \frac{1}{4}$

A t=0 on a q(t) =1 (aucune substitution ne s'est encore produite) et l'équation devient :

$$1 = C + \frac{1}{4} \qquad \text{soit} \quad C = \frac{3}{4}$$

On remplace C dans la solution générale : $|q(t) = \frac{3}{4}e^{-4\alpha t} + \frac{1}{4}|$

<u>Modèle de Jukes et Cantor (abrégé JC69)</u>

$$q(t) = \frac{3}{4}e^{-4\alpha t} + \frac{1}{4}$$

$$q(t) = \frac{3}{4}e^{-4\alpha t} + \frac{1}{4}$$
On peut donc en déduire p(t) car q(t) + 3p(t) = 1
$$p(t) = \frac{1}{3} \left[1 - \frac{3}{4}e^{-4\alpha t} - \frac{1}{4} \right] \text{ soit } p(t) = \frac{1}{4} \left[1 - e^{-4\alpha t} \right]$$

Considérons la probabilité d'observer une substitution à un site entre deux séquences, l'estimation de cette probabilité est donnée par la distance observée, c'est-à-dire la pdistance. Le temps de divergence séparant deux séquences homologues est de 2t. On a donc:

> p_{dist} = 3p(2t) (3 possibilités de substitution avec la même probabilité de substitution)

En remplaçant p(2t) par la valeur obtenue ci-dessus on obtient : $p_{dist} = \frac{3}{4} - \frac{3}{4}e^{-8\alpha t} = \frac{3}{4}(1 - e^{-8\alpha t})$

soit
$$e^{-8\alpha t} = \left(1 - \frac{4}{3} p_{dist}\right)$$
 et $8\alpha t = -Log\left(1 - \frac{4}{3} p_{dist}\right)$

d'où
$$\alpha t = -\frac{1}{8} Log \left(1 - \frac{4}{3} p_{dist} \right)$$

d'où $\alpha t = -\frac{1}{8} Log \left(1 - \frac{4}{3} p_{dist}\right)$ On a donc obtenu une relation entre le taux de substitution instantané et la p-distance

<u>Modèle de Jukes et Cantor (abrégé JC69)</u>

Calcul de la distance évolutive entre deux séquences dans le cadre de ce modèle :

On a vu précédemment que : $d=2\sum_i \pi_i \lambda_i t$

Quand $t \to \infty$ q(t) $\to \frac{1}{4}$ et p(t) $\to \frac{1}{4}$ (car $e^{-4\alpha t}$ vaut 0). A l'équilibre les fréquences des quatre bases sont donc toutes égales à $\frac{1}{4}$.

De plus, quelque soit $i\lambda_i$ est égal à λ donc la formule de la distance devient :

$$d = 2 \times 4 \left(\frac{1}{4}\lambda t\right) = 2\lambda t$$
 or $\lambda = 3\alpha$ donc en remplaçant λ dans l'équation on a $d = 6\alpha t$

Précédemment on a vu que $\left| \alpha t = -\frac{1}{8} Log \left(1 - \frac{4}{3} p_{dist} \right) \right|$

En remplaçant dans d'on obtient la distance de Jukes et Cantor :

$$d = -\frac{3}{4} Log \left(1 - \frac{4}{3} p_{dist}\right)$$
 Un facteur correcteur est donc apporter à la p-distance p_{dist}