
When starting a modeling project usually many parameters of the model are not known

How can I find out about parameter values?

 experimental approach: try to design an experiment for measuring the specific 
parameter

• typically in vitro experiment (e.g. for rate constants: put different 
amounts of substrate in a test tube and measure how fast the reaction 
proceeds)

• Problems: often not possible, to many parameters

 Systems biology approach: adapt a complete model to experimental data

Parameter estimation : introduction



Parameter estimation : basic idea of parameter fitting
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Change the parameter values of a model in order to that it best fits the experimental data



How to determine the “best” fit for a given set of experimental data ?

We will use heuristics

• Computation of the probability that the measurements (experimental data) 
would be the results of a simulation of the model 

• A high probability means that the model is good

• Criterion: likelihood is maximal when the difference between measurement
and simulation results is minimal (easy to calculate)

Parameter estimation : basic idea of parameter fitting
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Parameter estimation

The parameters inference problem for ordinary differential equation models is
usually formulated as an optimization problem with an objective function that has to
be minimized by adjusting the values of the model parameters. A common choice to
compute this objective function is to calculate the sum of squared errors between
measurements and model predictions : the least square distance measure
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A compound is tracked over time and 
we obtained N values. Thus N is the 
number of data point, 𝑥𝑖 is the 
measured value for time 𝑡𝑖 and , 𝑦𝑖 𝑝 is
the simulated value for time 𝑡𝑖 for a set 
of parameter values p
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Parameter estimation : parameter space

• The objective function may have many local minima
• If we have N parameters to estimate, the parameters represent an N-dimensional space, the 

parameter space
• A specific solution (specific parameter values) will correspond to a point in the parameter space 
• We need a way to find the set of parameter values (a point in parameter space) for which the 

distance D is minimal (the best fit)
• We will use an optimization algorithm since a systematic scan of the parameter space is not 

possible when the space dimension is large
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Parameter estimation : numerical optimization cycle



Many powerful algorithms:

● Gradient based
 Steepest Descent
 Levenberg Marquardt

● direct deterministic
 Hooke-Jeeves
 Nelder-Mead (simplex)

● direct random
 random search
 simulated annealing
 Evolutionary programming
 Genetic Algorithm
 SRES (stochastic ranking evolutionary)
 Particle Swarm

Parameter estimation : optimization methods



Parameter estimation : optimization algorithm

Different methods have been proposed:
Local optimization methods tend to converge quickly but have a tendency to get stuck in local 
optima 
Global methods might take time but ensure the global optimum

Focus on the particle swarm optimization (PSO) method since its performance compared to the 
fourth most popular optimization methods (Evolutionary Computation, Evolutionary Programming, 
Genetic Algorithms and Simulated Annealing) reveals that the PSO method performs the best in 
systems biology (Baker et al, 2010, Journal of Integrative Bioinformatics, 7(3):133).

PSO belongs to the class of stochastic global optimization methods which depend on probabilistic 
approaches.

PSO (optimization par essaims particulaires) was first proposed by Kennedy and Eberhart (1995, In 
Proceedings of the Sixth International Symposium on Micro Machine and Human Science MHS95, IEEE Press, 

3943).  It is inspired by social behavior and movement dynamics of insects, birds and fishes.



The swarm is typically modeled by particles that have a position and a velocity in multidimensional 
space. These particles roam through the hyperspace and have two essential reasoning capabilities:
A particle  is described by a position vector in the parameter space and a velocity vector. The velocity 
of a particle represents the direction of its parameter space exploration and the speed of the 
movement.

Each particle possesses:
• the memory of its own previous experience and remembers its best achievement (pbest)
Information about the best solution attained within its neighbors . The “global” version of the 
optimizer keeps track of the overall best value, and its location, obtained thus far by any particle in 
the population (gbest). In the “local” version, each particle keeps track of the  best solution attained 
within a local topological neighborhood of particles (lbest)

Parameter estimation : particle swarm optimization method





Each particle of the swarm is randomly initialized for its position and velocity. These 
particles roam through the parameter space and optimization concept consists of, at 
each time step, changing the velocity (accelerating) of each particle toward its pbest
and gbest or lbest.

Each particle modifies its position according to:
• its current position
• its current velocity
• the distance between its current position and pbest
• the distance between its current position and gbest

The PSO: Concept



PSO: algorithm

Let S be the number of particles in the swarm. 
Each particle i has a position xi ∈ ℝ

n in the search-space and a velocity vi ∈ ℝ
n

Let pi the best known position of particle i and ni the best known position of its neighbor
Let f the objective function which must be minimized

Initialization
for each particle i = 1, …, S do

Initialize randomly the particle position vector xi

Initialize the particle’s best position pi with xi (pi  xi)
If f(pi) < f(ni) then
Update the neighbor’s best position ni pi

Initialize the particle velocity



PSO: algorithm

While a termination criterion is not reached do
for each particle i = 1, …, S do

Update the particle velocity as follow:
vi = w vi + c1 r1 (pi – xi) + c2 r2 (ni – xi) 
Update the particle position:
xi = xi – vi

If f(xi) < f(pi) then
Update the particle best known position pi  xi

If f(pi) < f(ni) then
Update the neighbor’s best position ni pi

w = inertia
r1 and r2 = random number between 0 and 1
c1 is the importance of personal best value 
c2 is the importance of neighborhood best 
value
In the literature, usually suggested c1 = c2 = 2 
c1 and c2 represent the balance factors 
between the effect of  self-knowledge and 
social knowledge in  moving the particle 
towards the target. 

termination criterion: 
the specified number of iteration or the value of 
the objective function is < than a given threshold 
and a solution has been found



vi = w vi + c1 r1 (pi – xi) + c2 r2 (ni – xi)

inertia          personal influence           social influence
diversification                           intensification 

• Makes the particle move in the same direction 
and with the same velocity

1. Inertia

2. Personal 
Influence

3. Social 
Influence

• Improves the individual
• Makes the particle return to a previous position, 

better than the current
• Conservative

• Makes the particle follow the best neighbors 
direction

The PSO: algorithm

 Intensification: explores the previous solutions, finds the best solution of a given region

 Diversification: searches new solutions, finds the regions with potentially the best solutions



The PSO: algorithm
Example
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The PSO: algorithm
Example



Parameter estimation : particle swarm optimization method

Each iteration in PSO execution, requires for each particle of the swarm:

1. the values of the position vectors are set as the values of the model parameters
2. the model is simulated, by numerical integration of the ODE system, to produce the 

dynamic profiles corresponding to those parameter values
3. the simulated data are compared to the experimental data using the objective function 

described above

The iterative process will stop if the change of the objective function value is smaller than a 
specified value or if the number of specified iterations is reached. 

Here, a particle will correspond to the set of kinetic parameters that have to be estimated 
and a best achievement corresponds to the smallest value obtained for the objective function



Important:

• The result of a parameter fitting always needs to be inspected afterwards

• Having a good result for a fit does not mean that the parameter value is the “true” 

one. This depends on the assumptions about the errors and the correctness of the 

model.

• For the stochastic algorithms the result is not reproducible

Parameter estimation



Parameter estimation in COPASI
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Ronen et al., PNAS 2002

Zulkower et al., Bioinformatics 2015

Experimental data

Example of experimental time-series data: transcriptional fusion of a fluorescence (GFP) 
or luminescence (luciferase) reporter gene to the promoters of the target genes

Measurement techniques allow real-time and in-vivo monitoring of gene expression



The quantity of luminescence per cell as a function of time (𝑟(𝑡)) is :                            with𝑟 𝑡 =
)𝐼(𝑡

)𝐴(𝑡

• 𝐼(𝑡) is the luminescence intensity (in RLU)
• 𝐴(𝑡) the absorbance values corrected by subtraction of the absorbance background 

measured on wells containing only growth medium

Since the luciferase does not require any post-translational modification such as folding, this ratio 
estimates the average concentration of reporter protein per cell. 
The dynamics of the system is conveniently described by the temporal evolution of the luciferase 
concentration.

Normalized by 
OD value

Normalization of luminescence data



• Fluorescent activity of GFP in response to light excitation depends on post-
translational modifications, notably the folding of the protein to an appropriate
conformation, including the autocatalytic formation of the chromophore.

• This maturation process gives rise to an additional reaction step from GFP to active
GFP.

• See de Jong et al. BMC Systems Biology 2010, 4:55 for correct normalization of
fluorescence signal

Use of the green fluorescent reporter gene 
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Promoter activities deduced from luminescence signal

Promoter activities are deduced using its derivative according to the following formula (Stefan et al, 
2015, PLoS Comput. Biol. 11 e1004028) to take into account the effects of dilution and luciferase 
degradation:

where 𝑟 [min -1] is the degradation constant of the luciferase protein and (𝑡) [min -1] is the growth 
rate of the bacteria

With the growth rate μ(t) estimated 
from the absorbance as follow:
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Promoter activities deduced from luminescence signal

Normalized by 
OD value



Correction effects:  

protein concentration kinetics 

𝑑

𝑑𝑡
𝑝 𝑡 = 𝑓 𝑡 − 𝛾𝑝 + 𝜇 𝑡 𝑝 𝑡 , 𝑝 0 = 𝑝0 =

𝜇 𝑇 + 𝛾𝑟
𝜇 𝑇 + 𝛾𝑝

𝑟 𝑇

Computation of the concentration evolution of the protein of interest over time:
 Correction to take into account the differences in half-lives between the reporter luciferase 
and the protein whose gene activity is measured (Stefan et al, 2015, PLoS Comput. Biol. 11

e1004028):

where 𝛾𝑝 [min−1] is the degradation constant of the protein and µ(T) is the growth rate of bacteria at the end of the

preculture procedure (at time T). Usually, the bacteria in the preculture are in stationary phase, so (T) = 0,
therefore the initial protein concentration p0 depends only on the protein and luciferase degradation constants
and on the ratio r(T).

• Light color lines protein concentration 
kinetics taking into account only protein 
life time

• Dark color lines protein kinetics after 
correction

• protein of interest with a shorter life time (here 8 min) than luciferase (21.6 min): the uncorrected 
values clearly overestimate the protein concentration (red curves)

• protein of interest with a higher life time (here 80 min) than luciferase (21.6 min): the uncorrected 
values underestimate the protein concentration (blue curves)


