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Understanding metabolic dysregulation in different disease settings is vital for the safe and

effective incorporation of metabolism-targeted therapeutics in the clinic. Here, using tran-

scriptomic data for 10,704 tumor and normal samples from The Cancer Genome Atlas,

across 26 disease sites, we present a novel bioinformatics pipeline that distinguishes tumor

from normal tissues, based on differential gene expression for 114 metabolic pathways. We

confirm pathway dysregulation in separate patient populations, demonstrating the robustness

of our approach. Bootstrapping simulations were then applied to assess the biological sig-

nificance of these alterations. We provide distinct examples of the types of analysis that can

be accomplished with this tool to understand cancer specific metabolic dysregulation,

highlighting novel pathways of interest, and patterns of metabolic flux, in both common and

rare disease sites. Further, we show that Master Metabolic Transcriptional Regulators explain

why metabolic differences exist, can segregate patient populations, and predict responders to

different metabolism-targeted therapeutics.
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Despite waning interest in how metabolism influences
cancer, recent efforts have brought renewed awareness of
cancer as a metabolic disorder1–3. While the field was first

introduced to cancer as a glycolytic disease, often described as the
Warburg effect4, modern advancements have pointed to other
metabolic dependencies, such as fatty acid metabolism in prostate
cancer (PRAD)5. These investigations have led to the inclusion of
metabolic reprogramming as a new hallmark of malignant
transformation6. However, the extent to which all metabolic
genes and pathways are expressed by cancers of different origins,
and how they differ from one another, is largely underexplored.
Even more pressingly, how these metabolic pathways and genes
differ from non-malignant, normal human tissues have yet to be
determined. Few existing papers attempt to explain differences
between cancer and normal tissues that can be leveraged to
understand metabolic reprogramming, based on genomic per-
turbation7–10. While some innate differences between tumor and
normal tissues are addressed7, the focus is typically on common
mechanisms and metabolic gene dysregulation that exist in pan-
cancer, rather than those changes that exist in an individual
tumor type dysregulation, and how these affect existing
treatment9,10 and chemosensitivity11. Others look at this concept
solely from the metabolomic angle, in a single disease site8. These
studies, while informative, create a gap in which we question if
there are targetable metabolic pathways unique to a single disease
site and whether there is a way to distinguish patients who will
respond to these metabolic-targeted therapies.

Scientific consortiums like The Cancer Genome Atlas
(TCGA)12 encourage comprehensive genomics approaches in
large numbers of patients with many different cancer types, as
well as their matched normal tissues. This transcriptomic data has
already been used to explore and explain a wide variety of
important questions of cancer biology, particularly those aimed at
understanding immune response in different disease states13 and
oncogenic drivers14,15. For example, determining new ways to
classify tumors, whether by their cell of origin and immuno-
phenotype16 or their clinical outcome endpoints17, are helping to
assign treatments and treatment usage, especially in chemore-
sistant patients11. Others have looked more specifically at known
oncogenic molecular processes and pathways to better explain
how genomic mutations can impact expression and signaling14,15,
highlighting combination therapy potential15. These studies point
to the utility of using transcriptomic data to exploit biologically
relevant vulnerabilities, but do not focus on metabolic-targeted
therapies. Our approach, instead, focuses explicitly on using
transcriptomic data to identify metabolic vulnerabilities for 114
different pathways.

TCGA data allows the opportunity to address whether meta-
bolic genes differ between normal and malignant conditions
across diverse tissues of origin. While metabolomics, the systemic
study of small molecules utilized and left behind during essential
cellular processes18, is the most comprehensive way to under-
stand the metabolic composition of cells at a given time, the
technique is still in its infancy19. Conversely, abundant and
readily available transcriptomic data exists for large numbers of
patients in many types of cancer. Such datasets provide the
opportunity to investigate the variety of mechanisms cancers
utilize to control metabolic enzyme expression to achieve meta-
bolic reprogramming, including feedback and crosstalk between
metabolite pools and transcription20.

Recently, transcriptomics data in conjunction with current
biochemical understanding have been exploited to construct
genome-scale metabolic workflows21. This has been especially
successful in Escherichia coli, in which over half of the metabolic
outputs from >450 different reactions within the organism were
correctly modeled22,23. Nevertheless, extrapolating metabolic

changes from transcriptomics is not without its challenges, as
stoichiometric relationships and kinetic information must be
assumed. However, a recent study provided convincing evidence
for the extrapolation of metabolite levels from transcriptomic
data, based on high levels of significant correlation between the
two in a detailed look at breast cancer RNA-sequencing and
unbiased metabolomics24.

An additional challenge to understanding cancer metabolic
reprogramming lies in determining the genetic and epigenetic
changes controlling metabolic phenotypes. To this end, we sug-
gest elucidating expression and alteration of master metabolic
transcriptional regulators (MMTRs) may provide novel under-
standing of why metabolism differs in varying tissues. Ohno25

first recognized master transcriptional regulators, using the term
to describe transcription factors (TFs) that regulate sets of genes
which determine developmental fate. Master regulators (MRs)
have been implicated in a variety of disease states26,27 and with
several genomic alterations28,29. More recently, MRs have become
interesting as biomarkers of disease30,31 and pharmacological
targets32.

However, a more nuanced understanding of unique metabolic
dependencies, or weaknesses, in specific cancer types, subtypes, or
even tissues of origin, may provide novel mechanisms for ther-
apeutic targeting with lower toxicity than traditional che-
motherapeutics. A recent example is the recognition that cancers
that are deficient in the methylthioadenosine phosphorylase
enzyme are highly susceptible to inhibition of methionine ade-
nosyl transferase 2A (MAT2A), resulting in reduced function of
protein methyltransferase 533.

Metabolic therapies provide an attractive approach in the
clinic, due to evasion of both single and multi-drug resistance in
tumors, thus far34. Determining responders to these metabolic
therapies, however, has proven challenging. There are currently
no studies determining the MMTRs of specific metabolic path-
ways, which may serve as drivers of metabolic phenotypes. These
would also provide insights into ways to therapeutically leverage
metabolic dependencies and segregate patient populations by
predicted response to metabolic-targeted therapeutics.

Therefore, the aim of this study was to comprehensively assess
which metabolic pathways have altered metabolic transcriptional
profiles in 26 different cancer types as compared to their matched
normal tissues. Here we demonstrate that we have the ability to
not only segregate different disease sites and different molecular
subtypes of the same disease, but also to predict response to
metabolism-targeted therapy. This selective drug sensitivity is
further explained by individual pathway MMTRs. This represents
a means of identifying a mechanism by which these metabolic
pathways become distorted in malignancy and offers novel targets
for intervention.

Results
Pan-cancer screen for transcriptional metabolic dysregulation.
To screen for transcriptional metabolic dysregulation, we used
TCGA12 RNA-sequencing data from 26 different types of cancer
with matched normal samples (Fig. 1a, Supplementary Data 1)
applying a custom analysis pipeline (Fig. 1). Magnitude of
metabolic dysregulation was calculated by determining DEGs,
which includes log fold changes and adjusted p values, comparing
tumor with normal matched samples and assigning scores based
on 114 metabolic pathways from The Kyoto Encyclopedia of
Genes and Genomes (KEGG)35. Adjusted p value magnitude is
affected by sample size, which varies across datasets. To account
for how such variation would affect the metabolic pathway score,
each was divided by the square root of n (the sample size) for
each disease site. Bootstrapping methods were then used to
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determine which pathways were significantly (red) or non-
significantly (gray) dysregulated (Fig. 1b). The metabolic dysre-
gulation scores (Fig. 1c) were then confirmed in separate patient
populations for prostate36, lung adenocarcinoma (LUAD)37, and
breast carcinoma38 (Supplementary Figure 1). Pathway scores in

validation cohorts were significantly correlated with those from
TCGA cohorts with the same disease, demonstrating the pipe-
line’s robustness. To determine patterns of metabolic dysregula-
tion, individual pathway scores were segregated into ten major
metabolic classes (Fig. 1d). Additionally, MMTRs were
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determined for individual pathways, such as the pentose glucur-
onate interconversion (PGI) pathway (Fig. 1e), to elucidate dri-
vers of unique metabolic phenotypes existing in cancers of
different origins.

The 114 individual metabolic pathways were condensed into
ten major metabolic categories based on KEGG classifications
(Fig. 2a). After bootstrapping, pathways in each classification
were then further broken down by the number of cancers for
which they were dysregulated (Fig. 2b). Additionally, we
identified unique pathways, altered in one disease site (Fig. 2c,
Supplementary Data 6). For example, PRAD had two pathways
uniquely dysregulated (polyamine biosynthesis and nicotinamide
adenine dinucleotide biosynthesis). Analysis of pathways within
major metabolic categories revealed patterns of dysregulation
reflective of common metabolic reprogramming in cancer, like
patterns consistent with the Warburg effect, such as dysregulation
of glycolysis (Fig. 2d), to varying degrees in all cancer types.
While these results are in agreement with the literature, the
method also discovered additional metabolic disruption across
the 26 cancers examined.

One such finding is the common, but not universal,
dysregulation of pentose and glucuronate interconversion
(Fig. 2d), which is significantly altered in 20 cancer types. Due
to its high degree of dysregulation, this pathway has been studied
in some cancer types, including liver hepatocellular carcinoma
(LIHC)39,40. However, little is known about this pathway
in sarcoma (SARC), where we find it most strongly dysregulated.
Meanwhile in only six types of cancer PGI was not significantly
dysregulated. Conversely, some pathways were dysregulated in a
single type of cancer, like polyamine biosynthesis in PRAD,
suggesting unique dependencies of certain cancers (Fig. 2e).

Within specific metabolic categories, hierarchical clustering
highlighted disease sites with distinct levels of dysregulation. For
example, lipid metabolism disruption in skin cutaneous mela-
noma (SKCM), whose level and pattern of dysregulation within
this category caused SKCM to segregate separately from others
(Fig. 2f). SKCM is one of the least metabolically dysregulated
cancers, with 30 of 114 pathways significantly dysregulated, much
less than the mean number of dysregulated pathways, 58 of 114
(Fig. 1c).

Pathways dysregulated across multiple cancer subtypes. The
PGI pathway clusters closely with glycolysis and gluconeogenesis,
which are significantly dysregulated in all cancer types (Fig. 2b).
This pathway is involved in interconversions of monosaccharide
pentose and glucuronate, the salts or esters of glucuronic acid.
While it is known that this pathway is frequently dysregulated in
hepatocellular carcinoma, little is known about the dysregulation
of this pathway in the context of other disease sites40,41. As is
shown in the carbohydrate metabolism heatmap, many cancer
types highly dysregulate PGI, while only a few do not (Fig. 2b). To
better understand expression changes within PGI, the 35

individual genes of this pathway were examined in detail across
cancer types (Fig. 3a–b). This approach demonstrated two dis-
tinct groups of cancer sites, those significantly up-regulating and
those down-regulating a majority of genes within this pathway.

Consistent with what has previously been reported in LIHC,
our analysis found this disease site is amongst the cancers with
the most significantly dysregulated genes, nearly all of which are
down-regulated (23 of 35). Additionally, we obsevered that
SARC, kidney chromophobe (KICH), cholangiocarcinoma
(CHOL), and colon adenocarcinoma also have a high degree of
down-regulation within the PGI pathway, but the magnitude of
down-regulation exceeds LIHC. Conversely, the lung cancer
subtypes, LUAD and lung squamous cell carcinoma (LUSC), up-
regulate the greatest number of genes within the pathway, though
the magnitude of up-regulation is far greater in LUSC. While it
has been reported that intermediate metabolites of PGI are
increased in LUAD42, the transcriptional up-regulation of 20 of
the 35 genes within this pathway are unknown. Previous
literature has also pointed to the dysregulation of this pathway
in LUSC, but failed to further explore how this pathway was
transcriptionally disrupted43.

Modeling the metabolic pathways by placing significantly
dysregulated genes within the metabolic circuit may predict
which metabolites will be most readily affected and in what
direction. For example, comparing PGI models in LUAD (Fig. 3c)
and LIHC (Supplementary Figure 2) reveal two different
metabolic pictures. A large number of genes within the pathway
that are up-regulated in LUAD, but down-regulated in LIHC,
contribute to the generation of UDP-D-glucuronate from β-D-
glucuronoside and D-glucuronate-1 phosphate. Therefore, the
expression levels of these enzymes predicts for relatively high
UDP-D-glucuronate levels in LUAD, but low levels in LIHC. This
finding is highly consistent with previous metabolomic studies in
LUAD, which have asserted increased UDP-D-glucuronate levels,
in cancer tissues, as compared to matched normal42, as well as the
literature regarding global PGI metabolite down-regulation in
LIHC41.

Pathways uniquely dysregulated within a single cancer subtype.
This metabolic pipeline can also elucidate pathways uniquely
dysregulated in specific cancer types. An example of this is the
unique polyamine disruption in PRAD (Figs. 2e, 4a). Polyamines
are small, positively charged molecules with many functions,
impacting almost every aspect of cell survival44. While this
pathway is important in every cancer, the PRAD-unique dysre-
gulation of this pathway is particularly interesting because flux
through the biosynthetic pathway is extremely high in normal
prostate, due to the high rate of acetylated polyamine secretion
into the prostatic lumen45. Not only does PRAD have the highest
number of significantly up-regulated (compared to normal
prostate) genes in this pathway (Fig. 4b), they also show the
greatest magnitude of change, which is reflected in the large

Fig. 1 Transcriptional metabolic pathway analysis methods pipeline. a Twenty-six cohorts of tumor samples, including two pooled sets (COADREAD and
LUNG) from The Cancer Genome Atlas (TCGA), with matched normal samples, were utilized to determine the transcriptional metabolic profiles specific to
each type of cancer, as compared to their normal. b Pathway scores ((Σlog FC*− log(adj.p.val))/√n), for 114 metabolic pathways from KEGG, were then
calculated based on the results of differential expressed gene (DEG) analysis using Limma to compare tumors to matched normal. Pathways are then
bootstrapped for significance, to determine which pathways are highly dysregulated as compared to chance. Those pathways are then plotted in a
heatmap, with the type of cancer as the x-axis and the 114 pathways as the y-axis. Non-significant pathways are gray and a gradient from white to red for
those pathways significantly dysregulated and the intensity of red indicating the magnitude of dysregulation. c The number of significant pathway scores
are then summed to determine which types of cancers are most metabolically dysregulated at the transcriptional level, as compared to the average number
of dysregulated pathways (dashed line). d The pathways were then sorted into each of the 10 major metabolic pathway subtypes defined by KEGG and
later underwent e master regulator analysis via iRegulon
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Euclidean distance observed by unsupervised hierarchical clus-
tering (Fig. 4a).

Modeling of the polyamine metabolic circuit clearly demon-
strates an increase in polyamine biosynthesis and catabolism in
PRAD (Fig. 4c). This is reflected in increased expression of both

rate-limiting enzymes in the pathway (ODC1 and AMD1), and
significant increases in catabolic enzymes SAT1 (spermidine/
spermine N1-acetyltransferase 1), PAOX, and SMOX. The
pathway is further enhanced by MAT2A up-regulation and
down-regulation of the inhibitory subunit MAT2B, predicting for

25

b

a d

e

fc

Gluconeogenesis
0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

Glycolysis

Citric acid cycle

Propanoate metabolism

Galactose metabolism

Pyruvate metabolism

Butanoate metabolism

Tyrosine metabolism

Phenylalanine metabolism

Cysteine and methionine metabolism

D-Glutamine and D-Glutamate metabolism

Selenocompound metabolism

Arginine and proline metabolism

Beta-alanine metabolism

Histidine metabolism

Glutathione metabolism

Tryptophan metabolism

Valine, leucine and isoleucine degradation

Glycine, serine and threonine metabolism

Taurine and hypotaurine metabolism

Alanine, aspartate and glutamate metabolism

Starch and suctose metabolism

T
H

Y
M

E
S

C
A

H
N

S
C

B
R

C
A

S
TA

D
U

C
E

C
B

LA
D

C
E

S
C

S
K

C
M

K
IR

P
K

IR
C

G
B

M
P

R
A

D
LIH

C
LU

S
C

LU
A

D

PA
A

D
P

C
P

G

T
H

C
A

C
H

O
L

R
E

A
D

C
O

A
D

K
IC

H
S

A
R

C

T
H

Y
M

E
S

C
A

H
N

S
C

B
R

C
A

S
TA

D

U
C

E
C

B
LA

D

C
E

S
C

S
A

R
C

K
IR

P
K

IR
C

G
B

M

P
R

A
D

LIH
C

LU
S

C
LU

A
D

PA
A

D
P

C
P

G

T
H

C
A

C
H

O
L

R
E

A
D

C
O

A
D

K
IC

H

S
K

C
M

T
H

Y
M

E
S

C
A

H
N

S
C

B
R

C
A

S
TA

D

U
C

E
C

B
LA

D
C

E
S

C
S

A
R

C

K
IR

P
K

IR
C

G
B

M

P
R

A
D

LIH
C

LU
S

C
LU

A
D

PA
A

D

P
C

P
G

T
H

C
A

C
H

O
L

R
E

A
D

C
O

A
D

K
IC

H

S
K

C
M

Fructose and mannose metabolism

Inositol phosphate metabolism

Pentose phosphate

Glycogen degradation

Glycogen biosynthesis

Arginine biosynthesis

Homocysteine biosynthesis

Polyamine biosynthesis

Steroid hormone biosynthesis

Aldosterone biosynthesis

Estradiol biosynthesis

Testosterone biosynthesis

Steroid biosynthesis

Fatty acid biosynthesis

Biosynthesis of unsaturated fatty acids

Fatty acid elongation

Ketone biosynthesis and metabolism

Cyclooxygenase arachidonic acids metabolism

Shingolipid metabolism

Linoleic acid metabolism

Alpha-linoleic acid metabolism

Ether lipid metabolism

Arachidonic acid metabolism

Glycerophospholipid metabolism

Steroid hormone metabolism

Glycerolipid metabolism

Lysine degradation

Fatty acid degradation

Methionine cycle

Valine, leucine and isoleucine biosynthesis

Phenvlalanine, tvrosine and tryptophan biosynthesis

Hexosamine biosynthesis

Glyoxylate and dicarboxylate metabolism

Amino sugar and nucleotide sugar metabolism

Pentose and glucuronate interconversions

Ascorbate and aldrate metabolism

Neurotrans-
mitters

3%

Energy
metabolism

3%

Secondary
metabolites

10%

Vitamin
metabolism

18%

Carbohydrate
metabolism

16%

Lipid
metabolism

18%

Amino acid
metabolism

18%

Glycan
metabolism

7%

Xenobiotic
metabolism

3%

Nucleotide
metabolism

4%

20

A
m

in
o 

ac
id

 m
et

ab
ol

is
m

C
ar

bo
hy

dr
at

e 
m

et
ab

ol
is

m
Li

pi
d 

m
et

ab
ol

is
m

15

N
um

be
r 

of
 s

ta
tis

tic
al

ly
si

gn
ifi

ca
nt

 d
ys

re
gu

la
te

d 
pa

th
w

ay
s

N
um

be
r 

of
 u

ni
qu

el
y

dy
sr

eg
ul

at
ed

 p
at

hw
ay

s

10

5

0

0.0

Disease site

0.5

1.0

1.5

2.0

2.5

No 
ca

nc
er

s

1 
ca

nc
er

2-
5 

ca
nc

er
s

6-
10

 ca
nc

er
s

11
-1

5 
ca

nc
er

s

16
-2

0 
ca

nc
er

s

21
-2

5 
ca

nc
er

s

All c
an

ce
rs

PRAD

CHOL

PCPG

Primary bile acid biosynthesis

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07232-8 ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:5330 | DOI: 10.1038/s41467-018-07232-8 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


enhanced SAM production feeding into AMD1 as well as greatly
increased expression of the polyamine synthases, SRM and SMS.
These findings are consistent with well-documented increased
level of polyamines, acetylated polyamines, and other metabolites
within polyamine biosynthesis in PRAD, all of which can be
predicted by the modeling approach46,47. Conversely, in KICH,
the rate-limiting enzymes ODC1 and AMD1 are significantly
down-regulated, suggesting reduced levels of polyamines (Fig. 4a,
Supplementary Figure 3). Additionally, there is an increase in
SAT1, which increases acetylation of polyamines, but a decrease
in PAOX, which decreases back-conversion of acetylated poly-
amines to un-acetylated polyamines. These transcriptional
changes, taken together, lead to polyamine depletion in cancer,
as compared to normal tissues. This broad up-regulation of
polyamine biosynthesis in PRAD suggests a unique dependence
on its function, as compared to other disease sites, providing
rationale for pharmacological intervention.

The drug N1, N11-bis(ethyl)norspermine (BENSpm), a
SAT1 stabilizer that increases polyamine acetylation, was utilized
to understand whether prostate cancer cell lines could more
selectively be targeted by further destabilization of polyamine
metabolism. When comparing the sensitivity of eight cell lines,
two prostate cancer (DU145 and PC-3), two kidney cancer
(ACHN and 786-O), and four breast cancer lines (MDA-MB-231,
HS578T, T47D, and MCF7) (Fig. 5a–b), the prostate cancer lines
were most sensitive to BENSpm treatment.

These differences in polyamine biosynthesis dysregulation
between cancer types may be explained by MMTRs. When
analyzing the overall pathway scores, the two most highly
dysregulated cancer types are PRAD and KICH (Fig. 4a). As
previously demonstrated, when directionality is taken into
account, these pathways are largely dysregulated in opposite
directions (Fig. 4a). Utilizing iRegulon48, which pairs motifs and
chromatin immunoprecipitation-sequencing (ChIP-seq) tracks to
determine TFs controlling the gene networks, a list of MMTRs of
polyamine biosynthesis was constructed (Supplementary Fig-
ure 4). We then correlated MMTR expression with the expression
of individual genes in the polyamine biosynthetic pathway in
both PRAD and KICH cohorts (Fig. 5c). Distinct patterns of
correlation emerged in PRAD, where a majority of the MMTRs
were significantly correlated, either positively or negatively, with
polyamine biosynthetic genes. Comparisons of the cumulative
distribution frequencies of correlations between MMTRs and all
genes in the genome (black) with correlations of these MMTRs
with polyamine biosynthetic genes only (red) show that
polyamine gene correlations are statistically significant when
considering global expression patterns, demonstrated by a shift in
the distributions (Fig. 5d). Conversely, KICH lacks a strong
pattern of correlation between MMTRs and polyamine biosyn-
thetic genes (Fig. 5e, Supplementary Figure 5). This finding was
confirmed by cumulative distribution analysis, where there was
no significant relationship between MMTRs and polyamine
biosynthetic gene expression observed when considering global
transcriptional patterns (Fig. 5f). The top four MMTRs (BCL3,

GMEB2, GTF2B, and ZNF513), with the strongest collective
positive correlation, are important for polyamine biosynthetic
gene regulation, as evidenced by an iRegulon48 network, which
demonstrates that these four MMTRs are collectively predicted to
regulate 10/13 of the genes from the pathway (Supplementary
Figure 6). Thus, the metabolic analysis pipeline can discover
targets of pharmacologic intervention. Further, this information
combined with MMTR analysis can be a useful tool providing
insights into drivers of metabolic reprogramming across and
within cancer sites.

BRCA subtype metabolic reprogramming. BRCA is one of the
most metabolically dysregulated cancer types, in terms of the sum
of pathway scores (Fig. 1c). Analysis of all BRCA cases reveals a
large level of dysregulation of carbohydrate, lipid, and amino acid
metabolism in roughly equal proportions (Fig. 6a). Additionally,
the top dysregulated pathways seem to be encompassing path-
ways from each major category (Fig. 6b). Importantly, BRCA
consists of four molecular subtypes with distinct treatments and
outcomes for patients: luminal A, luminal B, HER2, and basal49.
This, therefore, leads us to question whether these four major
subtypes had distinct transcriptional metabolic profiles.

Using the PAM5050,51, a set of 50 DEGs utilized to classify
BRCA, all patients were assigned to one of the four subtypes.
Patients were first randomly clustered based on the expression
of all metabolic genes (Fig. 6c). Basal-like tumors (black),
clustered very distinctly from the luminal A (yellow), luminal B
(blue), and HER2-expressing (red) counterparts, indicating a
strong metabolic shift in these patients. While not as distinct,
smaller clusters did form for each of the other molecular
subtypes. Each molecular subtype was then compared to the
normal tissue, and DEG lists for each independent subtype
were utilized to determine which of the 114 pathways were
significantly dysregulated. This analysis revealed a total of 89
dysregulated pathways, some of which were missed entirely
by an analysis of BRCA pooled data. Pathways like tyrosine
metabolism and retinol metabolism, as well as glycolysis
and gluconeogenesis, are dysregulated across all subtypes,
but to a different degree (Fig. 6d), as indicated by different
scores for each pathway among the four molecular subtypes.
While many pathways were dysregulated across all subtypes,
there were distinct pathways present in each molecular
subtype. For example, in basal-like tumors, the most aggressive
forms of BRCA, terpenoid backbone biosynthesis, homocys-
teine biosynthesis, and the citric acid cycle (CAC), are uniquely
dysregulated, amongst others (Fig. 6e). Meanwhile, in lumina-
l A tumors, the subtypes with the most favorable prognosis,
α-linoleic acid metabolism, taurine and hypotaurine
metabolism, and cyclooxygenase arachidonic acid metabolism,
were uniquely dysregulated (Fig. 6f). Further, this unique
metabolic pathway dysregulation in molecular breast subtypes
suggests potential differential sensitivity to therapeutic
intervention.

Fig. 2 Ascertaining pathways of interest by looking at major types of metabolic pathways. a One hundred and fourteen metabolic KEGG pathways broke
down into 10 major metabolic types of pathways. This allowed for the identification of b pathways that were statistically significantly altered in a specific
number and variety of cancers and c the number of uniquely dysregulated pathways in specific tumor types. Each of these major metabolic categories was
then broken down into individual heatmaps of bootstrapped pathway scores where gray are non-significant altered pathways and the gradient of red
represents the magnitude of dysregulation (combination of both up-dysregulation and down-dysregulation) in each of the pathways across the cancer
cohorts. d In carbohydrate metabolism, a pathway largely altered across all tumor types, like pentose and glucuronate interconversions, is highlighted.
e Within amino acid metabolism, the polyamine biosynthetic pathway is highlighted as an example of cancer-type-specific dysregulation. f Subcutaneous
melanoma (SKCM) was identified as the cancer type with the highest degree of dysregulation, based on Euclidian distance, within a subset of the KEGG
pathways in the lipid metabolism category
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pathways (yellow ellipse)
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Since homocysteine biosynthesis is specifically dysregulated in
the basal-like subtype, we utilized the drug sulfasalazine, an Xc
cysteine-glutamate transport inhibitor that decreases intracellular
homocysteine pools52, to understand whether basal breast cancer
cell lines could more selectively be targeted by homocysteine cycle

destabilization. When comparing the sensitivity of eight cell lines,
two prostate cancer (DU145 and PC-3), two kidney cancer
(ACHN and 786-O), two luminal breast cancer (MCF7 and
T47D), and two basal breast cancer (MDA-MB-231 and HS578T)
(Fig. 6h), we did see increased sensitivity of basal breast cancer to
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sulfasalazine, as compared to the luminal breast cancer cells.
Interestingly, prostate cancer cells were more sensitive, which is a
finding consistent with the fact that our analysis identifies PRAD
as one of two disease sites with significantly dysregulated
homocysteine biosynthesis (Fig. 2e). It is also notable that this

pathway was not detected as dysregulated in the BRCA cohort,
but is dysregulated specifically in the basal-like subtype.

Additionally, the drug metformin, a first-generation biguanide,
principally thought to be a mitochondrial complex 1 inhibitor,
has been shown to decrease glucose metabolic flux through the

Color key
and histogram

Gene expression
correlation values

0

C
ou

nt
R

el
at

iv
e 

ce
ll 

vi
ab

ili
ty

 (
%

)

20

40

0 0.5–0.5

–6

log[BEN]

DU145 131.3 nM

141.6 mM

>1 uM

>1 mM

>1 mM

8.2 uM

1 uM

1.25 uM

PC-3

PC3

ACHN

ACHN

786-0

78
6-

O

MDA-MB-231

M
DA-M

B-2
31

HS578T

HS57
8T

MCF7 M
CF7

T47D

T47
D

–8–10

0.0

0.5

1.0

1.5

R
el

at
iv

e 
ce

ll 
vi

ab
ili

ty
 (

%
)

0.0

1.0

0.8

MAT2A

ODC1

SAT1

SMOX

SMS

PAOX

OAZ3

OAZ2

SRM

AMD1

AZIN1

MAT2B

Master regulators

G
T

F
2B

B
C

L3

Z
N

F
51

3

G
M

E
B

2

M
A

X

H
IN

F
P

C
U

X
1

TA
F

7

H
S

F
2

TA
F

1

H
LF

G
R

H
L1

M
Y

C

M
Y

C
N

S
M

A
D

4

Master regulators

G
T

F
2B

B
C

L3

Z
N

F
51

3

G
M

E
B

2

M
A

X

H
IN

F
P

C
U

X
1

TA
F

7

H
S

F
2

TA
F

1

H
LF

G
R

H
L1

M
Y

C

S
M

A
D

4

OAZ1

MAT2A

ODC1

SAT1

SMOX

SMS

PAOX

OAZ3

OAZ2

SRM

AMD1

AZIN1

MAT2B

OAZ1

0.6

0.4

C
um

ul
at

iv
e 

fr
ac

tio
n

C
um

ul
at

iv
e 

fr
ac

tio
n

0.2

0.0

0.0

GTF2B

GTF2B

GTF2B

GMEB2

MYC

TAF1

SMAD4

GRHL1

HSF2

HINFP

CUX1

MAX

MYCN

HLF

BCL3

0.496

PRAD pVal

0.116

0.718

0.737

0.64

0.527

0.408

0.134

0.064ZNF513

TAF7

GTF2B

GMEB2 0.003

0.006

0.03

0.018

0.018

0.041

MYC

TAF1

SMAD4

GRHL1

HSF2

HINFP

CUX1

MAX

MYCN

HLF

BCL3

0.959

0.984

0.937

0.681

0.748

0.906

0.905

0.955

0.982ZNF513

TAF7

GTF2B

GMEB2 0.944

0.983

0.383

0.74

KICH pVal

0379

0.996

MMTR correlation

MMTR correlation

0.5

Background median = –0.016

p -value = 0.006

Polyamine median = –0.148

Background median = –0.02

p -value = 0.003

Polyamine median = 0.161

Background median = 0.031

p -value = 0.983

Polyamine median = 0.006

Background median = 0.011

p -value = 0.944

Polyamine median = –0.018

1.0–0.5–1.0

1.0

–1.0 –0.5 0.0 0.5 1.0

MMTR correlation

–1.0 –0.5 0.0 0.5 1.0

MMTR correlation

–1.0 –0.5 0.0 0.5 1.0

0.8

0.6

0.4

0.2

0.0

C
um

ul
at

iv
e 

fr
ac

tio
n

1.0

0.8

0.6

0.4

0.2

0.0

C
um

ul
at

iv
e 

fr
ac

tio
n

1.0

0.8

0.6

0.4

0.2

0.0

DU14
5

0.5

1.5

1.0

BENSpm larger dose response

–2 0

DU145

100 nM BENSpm
Cell line IC50

PC-3

ACHN

786-O

HS578T

MCF7

T47D

MDA-MB-231

–4

Color key
and histogram

Gene expression
correlation values

0

C
ou

nt

10

25

ba

c d

fe

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07232-8 ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:5330 | DOI: 10.1038/s41467-018-07232-8 |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


CAC53. Therefore, metformin was utilized to determine whether
basal breast cancer cells could more selectively be targeted, due to
the unique dysregulation of the CAC. When comparing the
sensitivity of eight cell lines, two prostate cancer (DU145 and PC-
3), two kidney cancer (ACHN and 786-O), two luminal breast
cancer (MCF7 and T47D), and two basal breast cancer (MDA-
MB-231 and HS578T) (Fig. 6h), we did see increased sensitivity of
basal breast cancer to metformin, as compared to any other cells.

This was further confirmed using the Sanger Genomics in
Drug Sensitivity Database54, where data were downloaded for
phenformin, a second-generation biguanide. In this larger drug
screen, which included 13 luminal breast cancer and 24 basal
breast cancer cell lines, the basal cells demonstrated a statistically
significant 2-fold increase in sensitivity to phenformin (Fig. 7a),
confirming the sensitivity to metformin drug treatments.
Clustering was then performed for all TCGA disease sites for
the CAC genes and identified a distinct signature for two groups
of cancers: those that preferentially up-regulate or down-regulate
CAC genes (Fig. 7b). Sensitivity to phenformin across all cohorts
of TCGA-associated cell lines were plotted (Fig. 7c), and
demonstrated that although basal breast cancer cells are indeed
more sensitive, the cancer types with up-regulated pathways were
not more sensitive than down-regulated cancer types. Due to the
lack of clear trends in phenformin response, the DeSigN
database55 was used to determine additional drugs whose efficacy
would depend on CAC gene dysregulation. Multiple drugs were
predicted (Fig. 7d) to have a stronger effects on basal breast
cancer, which highly dysregulates the CAC. This is shown by
statistically significant increased sensitivity in a majority of basal,
as compared to the luminal, cell lines. One drug with a high
connectivity score, 681640 (wee-1 inhibitor), was utilized to better
understand sensitivity across multiple disease types. As compared
to the mean half-maximal inhibitory concentration (IC50) across
all cell lines, those with TCGA classifications, that fell within the
up-regulated group (Fig. 7e, purple) were more sensitive than
those within the down-regulated group (Fig. 7e, orange), with the
exception of BRCA which showed increased variability. This
variability is most likely due to statistically significant differences
in IC50s between basal and luminal subtypes, where basal
subtypes were more sensitive, as predicted (Fig. 7e, f). Overall,
it is noteworthy that magnitude of distortion of a metabolic
pathway can accurately predict drug sensitivity, even when those
drugs do not explicitly target the metabolic pathway.

Given the differential therapeutic sensitivity based on specific
pathway distortion, we asked what drives this distortion in
patient populations. MMTRs of uniquely dysregulated path-
ways (Fig. 8a) in luminal A (Fig. 8b) and basal (Fig. 8c)
subtypes of BRCA were identified. The top 5 MMTRs in basal-
like unique pathways (SREBF1, ESRRG, ESRRA, RFX2, and
SREBF2) differ from those associated with the luminal A
unique pathways (IRF8, OVOL1, THAP1, GATA1, and

TFAP2C). Further, MMTR expression levels cluster patients
based on their molecularly defined BRCA subtypes, where basal
(black) patients are independent from luminal A (yellow)
patients (Fig. 8a). The distinct metabolic profiles and ability of
MMTRs to accurately distinguish normal breast cells from
luminal A and basal breast cells were further confirmed using
RNA-sequencing data from 27 different cell lines56. First, with
the exception of one luminal cell line (JM225CWM), the
metabolic gene expression clearly segregated the luminal, basal,
and normal breast cell lines (Fig. 8d). Second, when we
clustered cell lines on MMTR expression levels, defined in
Fig. 8a, cell lines segregated by molecular subtype. These
MMTRs provide possible explanations for differences in
metabolic reprogramming between different BRCA subtypes.

Discussion
The present study applies an analytical pipeline utilizing tran-
scriptomic information to characterize changes in metabolic
pathways associated with cancer. The approach successfully
profiled metabolic reprogramming in 26 cancer types, revealing
common and unique patterns of disruption in major cancer
cohorts, as well as metabolic vulnerabilities distinguishing mole-
cular subtypes within the same disease site.

The scoring algorithm yields insights that cannot be acquired
through DEG analysis alone by looking not only at the magnitude
of changes occurring in a particular gene, but also how mean-
ingful that change is to the disease site. Combining the fold
change and adjusted p value into a single score allows scaling of
the importance of gene expression changes within a metabolic
pathway. The bootstrapping approach then accounts for changes
in a way that identifies patterns not expected simply by chance
(Supplementary Figure 7). This is an important aspect of our
pipeline, as it accounts for the varying degree of tumor-associated
transcriptional drift across cancer types, as well as tissue pro-
curement error and/or contaminating cell types associated with
cohort samples at tissue-specific rates. Furthermore, mapping
these genes onto metabolic circuits, with magnitude of change
and direction (up-regulation or down-regulation), allows for
determination of patterns indicating convergence of effect on key
metabolites.

High degrees of correlation between population pools from
different transcriptomic platforms (RNA-sequencing/micro-
arrays) further demonstrate the robustness of this approach
(Supplementary Figure 1). These additional datasets implicate
many of the same pathways as being highly dysregulated in
PRAD36, LUAD37, and BRCA38 as compared to normal matched
tissues. Confirmation in three separate patient populations, on
different transcriptomic platforms, reveals biologically relevant
metabolic pathway dysregulation, and that our scoring approach
is highly robust.

Fig. 5 Targeting polyamine biosynthesis is highly effective in prostate cancer, and master metabolic transcription regulators (MMTRs) may explain why
a dose–response curves show prostate cancer cell lines (PC-3 and DU145) that are most sensitive to SAT1 activation by BENSpm, as compared to kidney
cancer cell lines (ACHN and 786-O) and breast cancer cell lines (MCF7, MDA-MB-231, and HS578T) (n= 3). b This is confirmed by calculation of IC50s.
c Prostate cancer (PRAD) heatmap of correlations between MMTRs (x-axis) and the polyamine biosynthetic genes (y-axis) with the intensity representing
strength of correlation (blue is negative, red is positive) and d cumulative distribution frequencies showing MMTR correlation with every gene in the
genome, with red dots indicating the correlations with polyamine biosynthetic genes, show a distinct pattern and high level of statistically significant
correlation values between MMTRs and polyamine biosynthetic genes. P values for all MMTRs and polyamine genes are reported in the table, with
significant associations highlighted in red. e Kidney chromophobe (KICH) heatmap of correlations between MMTRs (x-axis) and the polyamine
biosynthetic genes (y-axis), with the intensity representing strength of correlation (blue is negative, red is positive) and f cumulative distribution
frequencies showing MMTR correlation with every gene in the genome, with red dots indicating the correlations with polyamine biosynthetic genes, show
an random pattern and non-statistically significant correlation values between MMTRs and polyamine biosynthetic genes. P values for all MMTRs and
polyamine genes are reported in the table, with significant associations highlighted in red. *Error bars= s.d
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Two related studies have addressed metabolic patterns of dis-
ease through transcriptomic analysis, successfully identifying
metabolic differences either between normal and cancer7 or
across cancers24. We expand upon this by looking at expression

difference of MMTRs for specific metabolic pathways and their
correlation with magnitude of metabolic pathway dysregulation
(Figs. 5, 8). MMTRs provide putative mechanistic insight into
observed metabolic profiles and are associated with target gene
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expression. They can be genetic drivers and are clinically relevant
molecular signatures in cancer cohorts. Combining identification
of drug sensitivity and correlation with degree of pathway dys-
regulation (Fig. 7) allows for target patient population identifi-
cation (Fig. 8).

An important test of validity for the metabolic pathway scores
generated is modeling metabolic circuits, predicting expected
metabolite pool alterations, and comparing that with published
metabolomic studies. The PGI pathway is well known to be
dysregulated and almost exclusively studied in LIHC39,40. How-
ever, we suggest that there are cancers dysregulating this pathway
to a greater degree, including LUAD, where there is significant
pathway-specific gene up-regulation (Fig. 3). Unbiased metabo-
lomic studies comparing LUAD with normal lung tissue identi-
fied significant UDP-D-glucuronate elevation42. As shown in
Fig. 3c, the significant gene expression changes in LUAD patient
samples would be expected to divert metabolites towards the
UDP-D-glucuronate production, which connects to several other
pathways57,58. Interestingly, LUSC up-regulates this pathway
more than LUAD. However, little metabolomic data exists in the
context of this disease site. Nevertheless, our metabolic pathway
scores implicate this pathway as being at least equally important
in LUSC.

Perhaps not surprisingly, we also found metabolic pathways
with highly restricted patterns of dysregulation like polyamine
metabolism in prostate cancer (Fig. 4a). It is well established that
this pathway is highly active in normal prostate, and further
enhanced in prostate cancer45,46. The nearly complete biosyn-
thetic and catabolic enzymes up-regulation in PRAD is striking,
and the idea of increased metabolic flux is supported by meta-
bolomics47. Additionally, therapeutic targeting of polyamine
biosynthesis with BENSpm is highly effective and selective,
highlighting the utility of the metabolic pipeline in determining
metabolic pathways of interest for pharmacologic intervention.

Further, we identified a set of MMTRs for genes in polyamine
biosynthesis whose expression highly and positively correlated
with significant up-regulation of those genes in PRAD. In con-
trast, polyamine biosynthesis is down-regulated in KICH and
exhibited weaker, non-significant correlations between MMTR
expression and genes within the pathway. Additionally, MMTR
association with common cancer-type-specific mutations may
indicate differences in metabolic reprogramming for specific
patient populations based upon co-occurrence or mutual exclu-
sivity. For example, TMPRSS2-ERG fusion in PRAD, one of the
most frequently occurring mutations, is mutually exclusive with
GTF2B overexpression, a highly enriched MMTR. Interestingly,
there is a significant amount of overlap amongst ERG and
GTF2B-binding sites, and in PRAD ChIP-seq data, ERG peaks
have been identified in three polyamine genes, potentially
explaining their mutual exclusion (Supplementary Figure 4). This
highlights the potential for different genetic drivers of disease to

cooperate with altered MMTR expression to drive specific pat-
terns of metabolic reprogramming.

Also of interest was the identification of patient subsets within
breast cancer exhibiting unique patterns of metabolic repro-
gramming. Understanding metabolic profiles of different mole-
cular subtypes are important in disease sites like BRCA, where
different subtypes have distinct treatment regimens and outcomes
(Fig. 6). The basal-like subtype, also known as triple-negative
breast cancer, as defined by the PAM5050,51 clusters tightly based
on metabolic genes and exhibits more highly dysregulated
metabolic pathways (Fig. 6c). We effectively exploited this
metabolic difference using drugs targeting homocysteine bio-
synthesis (Fig. 6g), as well as those that either target the CAC
(Fig. 6h) or those predicted to be more effective when the CAC is
dysregulated (Fig. 7). In both cases, basal-like cell lines are more
sensitive than luminal A-like cell lines, in agreement with the fact
that these pathways were uniquely dysregulated in the basal-like
patients. The identification of MMTRs driving the differences in
metabolic dysregulation between luminal A and basal subtypes
results in distinct clustering when looking at MMTR expression
(Fig. 8).

It is important to note that drugs identified in Fig. 7 were
predicted to have better efficacy when the CAC is dysregulated,
yet they are not thought to directly target the CAC. Though they
were identified specifically on the dysregulated CAC gene sig-
nature, the predictions do not explain whether CAC dysregula-
tion is mechanistically responsible for the increased efficacy, or if
CAC dysregulation co-occurs with another feature that is
mechanistically responsible. These findings are hypothesis gen-
erating, not conclusive. In order to address this, one would need
mechanistic insights into why a wee-1 inhibitor (681640) and an
anti-folate (methotrexate), for example, are more effective in cell
types with dysregulated CAC and then experimentally manipulate
the CAC, or the hypothesized co-occurring mechanism, to ask if
this alters their efficacy.

An important caveat to this type of analysis is the limitations of
how far transcriptomic data can be equated to metabolic dysre-
gulation, which occurs to a great extent at the post-transcriptional
and post-translational levels. Thus, interpretation of results from
such analysis, while hypothesis generating, needs to be followed
up with proteomic and metabolomic data, to fully investigate
predicted metabolic weaknesses for therapeutic exploitation. To
better understand metabolic flux across types of cancer and even
among subtypes within a particular cancer type, more unbiased
metabolomics studies need to be conducted to fully appreciate the
role of metabolic reprogramming in cancer initiation, progres-
sion, and prognosis59. Despite such limitation, this
transcriptome-based approach provides insights that can drive
more focused lines of research incorporating targeted metabo-
lomics and proteomics studies. The high level of correlation
observed between studies in separate cohorts of patients with the

Fig. 6 Metabolic dysregulation distinguishes BRCA molecular subtypes and defines therapeutic sensitivity. a Breakdown of 62 significantly dysregulated
metabolic pathways in the BRCA pooled data. There is a roughly equal dysregulation of amino acid, carbohydrate, and lipid pathways. b The top pathways
dysregulated in BRCA come from a wide variety of major categories, like nucleotides and lipids. However, the two most dysregulated pathways in BRCA are
a vitamin-associated pathway, retinol metabolism, and an amino acid pathway, tyrosine metabolism. c Unsupervised clustering of BRCA patients, who were
classified based upon the PAM50, on all metabolic genes, reveals a tight cluster of the basal-like subtype (black), which are highly metabolically
dysregulated as explained by the magnitude of dysregulation, as displayed in the heatmap. While luminal A (yellow), luminal B (blue), and HER2-
expressing (red), did not cluster as tightly, there are still recognizable groups of these patients. d The Top 5 pathways that overlapped between all four
subtypes of patients are shown here. While these pathways are highly dysregulated in all four subtypes, they vary to different extents and are almost
always highest in the basal-like cells. e After metabolic pathway scoring, pathways unique to the basal-like, and (f) luminal A patients were plotted. The top
5 unique pathways for each of the subtypes are shown. g Targeting the homocysteine biosynthetic pathway with sulfasalazine reveals increased sensitivity
in basal-like cells, as compared to luminal A cells, as emphasized by the IC50 values (n= 3). h Targeting the citric acid cycle with metformin reveals
increased sensitivity in basal-like cells, as compared to luminal A cells, as emphasized by the IC50 values (n= 3). *Error bars= s.d.
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same disease combined with the fact that mapping of metabolic
circuits predicts changes in metabolites that have been previously
published provide confidence that this method is a highly infor-
mative for novel insights. This analytical pipeline can be applied
to any transcriptional data to infer patterns of metabolic repro-
gramming, in any disease setting.

Methods
Pan-cancer DEG analysis. The results published here are in whole based upon
data generated by TCGA12 Research Network (http://cancergenome.nih.gov/).
Firehose, a web portal site that has been developed by the Broad Institute, (https://
gdac.broadinstitute.org) aiming to deliver automated analyses of the TCGA data to
general users, was utilized to download the preprocessed, Level 3, RSEM tran-
scriptomic data. Gene expression data was analyzed using Bioconductor 3.1 (http://
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bioconductor.org), running on R 3.1.3. RNA-sequencing RSEM counts were pro-
cessed to remove genes lacking expression in more than 80% of samples. To
identify DEGs, primary tumor samples (samples ending in “0.01”) were compared
to their matched normal tissues (samples ending in “0.11”), in their respective
tissues. Scale normalization and moderated Student's t tests were performed using
empirical Bayes statistics in the “Limma”60 package. The resulting p values were
adjusted for multiple testing using the false discovery rate Benjamini and Hochberg
correction method (Supplementary Data 7).

Code availability. Code is available upon request to the corresponding author.

Pathway score. Gene and pathway scores were calculated in R 3.1.3. DEG lists for
each cancer site were used to assign individual gene scores. Gene scores (Eq. 1)
were designated by taking the absolute value of the log FC multiplied by the –log
(adjusted p value):

Gene score ¼ log FC�� log adj:p:valð Þj j: ð1Þ

Metabolic pathways were then downloaded from the KEGG35 were downloaded.
Genes from each of the 114 pathways are reported in Supplementary Data 2.
Pathway scores (Eq. 2) were then calculated by summing the gene scores for all
genes within each of the pathways and dividing by the square root of the sample
size for that particular tissue, to account for sample size effects in different cancer
sites:

Pathway score ¼ Σ Gene scoresð Þ=pn: ð2Þ

All pathway scores were then exported into a table, to determine statistical sig-
nificance of each score (Supplementary Data 3). Pathways were clustered into 10
major categories based upon KEGG classifications.

Bootstrapping for pathway score statistical significance. Bootstrapping61 is a
technique based on random sampling with replacement. Using R 3.1.3, pathway
scores were randomly generated 100,000 times per pathway, based on the number
of genes in the pathway, and plotted into a distribution. The scores for each of
those pathways were then plotted against the distribution and a p value was cal-
culated based on where that score lies within the distribution of scores (Supple-
mentary Figure 5). Using all p values, the pathway score table (Supplementary
Data 4) was adjusted to only include those scores that were considered to be
statistically significant. All other values were replaced with “0” (Supplementary
Data 5).

Pathway scores heatmap. Bootstrapped pathway scores were utilized to create
pathway score heatmaps in R 3.1.3, constructed using the “Gplots” and “Heat-
map.2” packages in R. Data were scaled and Euclidian distances and hierarchical
clustering were applied using the “h.clust” function. All 0 values (non-significant
pathway scores) are represented as gray. For specific pathway heatmaps, at the gene
level, fold-change values from the initial Limma output for each cancer type was
utilized. Data were scaled using a min to max calculation (Eq. 3):

m�min mð Þð Þ= max mð Þ�min mð Þð Þ: ð3Þ

Once again Euclidian distances and hierarchical clustering was applied. Heatmaps
of the significantly DEGs are represented by blue (negative) or red (positive), and
non-significantly DEGs are represented as gray (Supplementary Data 8 and 9).

Pathway maps. Pathway maps were generated using the Cytoscape62 software, and
specifically the VizMapper functions. Pathway maps were based on existing
pathway maps in KEGG35. Limma output for DEG analysis was utilized to direct
shading of genes within the pathway: red (positive fold change, statistically sig-
nificant), blue (negative fold change, statistically significant), or gray (non-statis-
tically significant), for individual cancer sites.

Dose–response cell viability. PC-3 and DU145 cells were obtained from ATCC
(Manassas, CA, USA). MDA-MB-231 cells were provided by Dr. John Ebos, Ph.D.
(Department of Cancer Genetics, Genomics and Development, Roswell Park
Comprehensive Cancer Center (RPCCC), Buffalo, NY, USA). 786-O and ACHN
cells were provided by Dr. Eric Kauffman, M.D. (Department of Medicine, Roswell
Park Comprehensive Cancer Center (RPCCC), Buffalo, NY, USA). HS578T cells
were provided by Dr. Mikhail Nikiforov, Ph.D. (Department of Cell Stress Biology,
Roswell Park Comprehensive Cancer Center (RPCCC), Buffalo, NY, USA). MCF7
and T47D cells were provided by Dr. Katerina Gurova, M.D., Ph.D. (Department of
Cell Stress Biology, Roswell Park Comprehensive Cancer Center (RPCCC), Buffalo,
NY, USA). All cells were mycoplasma tested prior to use by respective labs and
either ATCC certified or STR profiled. All prostate cancer cells (DU145 and PC-3)
were maintained in RPMI-1640 medium supplemented with 10% fetal bovine
serum (FBS) and 1% antibiotics. Other cells were maintained in Dulbecco's
modified Eagle's medium with 10% FBS and 1% antibiotics. Metformin and sul-
fasalazine were obtained from Sigma and BENSpm was purchased from Synthesis
Med Chem (Shanghai, China). Cells were seeded in 96-well plates at 3000 cells/well
on day 0. They then underwent either 48 h (BENSpm and Sulfasalazine) or 72 h
(metformin) of treatment. Resazurin (Sigma) was then added to each well and
allowed to incubate for 2 h at 37 °C. The plates were then read on a spectro-
photometer by excitation at 570 nm and reading of the fluorescence at 600 nm.
Dose–response curves were then plotted using Prism GraphPad 7.

MMTR analysis. In order to characterize regulatory networks, we used iRegulon48,
a Java add-on in Cytoscape, to identify MMTRs. In this approach, we use a large
collection of TF motifs (9713 motifs for 1191 TFs) and a large collection of ChIP-
seq tracks (1120 tracks for 246 TFs). This method relies on a ranking-and-recovery
system where all genes of the human genome (hg19) are scored by a motif dis-
covery step integrating the clustering of binding sites within cis-regulatory modules
(CRMs), the potential conservation of CRMs across 10 vertebrate genomes, and the
potential distal location of CRMs upstream or downstream of the transcription
start site (TSS ±10 kb). The recovery step calculates the TF enrichment for each set
of genes, input for each of the individual analyses, leading to the prediction of the
TFs and their putative direct target genes, which exist in the input lists. This
method optimizes the association of TFs to motifs using both direct annotations
and predictions of TF orthologs and motif similarity.

MMTR correlation analysis. Correlation values between MMTRs and all
expressed genes were derived in R 3.1.3, constructed using the “cor” function across
all patients in both TCGA-PRAD and KICH cohorts. The empirical cumulative
distribution function for each complete MMTR correlation profile (background)
was determined via the “ecdf” function, and similarly for the MMTR correlation
profiles against polyamine biosynthetic genes only. Significant shift in distributions
between MMTR/background and MMTR/polyamine biosynthetic gene correla-
tions was assessed by Kolmogorov–Smirnov test. (Supplementary Data 10)

Common mutation analysis. Using cBioPortal (http://www.cbioportal.org),
patients in the PRAD cohort were queried for either co-occurent relationships or
mutually exclusive relationships between the list of most commonly occurring
mutations in PRAD and the four MMTRs in question. CBioPortal is a publically
available database, which based on all of the genomic data available for PRAD
constructs a list of the most commonly occurring mutations. Additionally, it cal-
culates the significance of co-occurrence or mutual exclusivity, based upon the
Mutual Exclusivity Modules (MEMo)63. MEMo is a method that searches and
identifies modules based upon: (1) genes recurrently altered across a set of tumor
samples; (2) genes known to or likely to participate in the same biological process;
and (3) alteration events within the modules are mutually exclusive. Using this
information, it then integrates multiple data types and maps genomic alterations to
biological pathways and uses a statistical model that predicts the number of
alterations both per gene and per sample.

GTF2B and ERG-binding site overlap. ChIP-seq BED files were downloaded from
the Cistrome database (http://www.cistrome.org), corresponding with three different

Fig. 7 Basal-like BRCA cells are more sensitive to citric acid cycle targeting than luminal-like BRCA cells. a The Sanger Database of Genomics of Drug
Sensitivity in Cancer shows a statistically significant difference in sensitivity to phenformin between basal and luminal-like breast cancer cell lines.
b Hierarchical clustering of all TCGA cancer cohorts revealed two major groups of citric acid cycle gene expression: highly up-regulated (purple) and highly
down-regulated (orange). c Analysis of sensitivity to phenformin in cell lines of different cancer types comparing those with citric acid cycle gene up-
regulation (purple) and down-regulation (orange). d DeSigN was then used based on the citric acid cycle signature to determine drugs that would
preferentially target cells with CAC dysregulation and identified 11 drugs, most of which had significant differences in drug sensitivity between luminal and
basal breast cell lines. e Data downloaded for cell lines with TCGA classifications that were utilized in this analysis revealed those cancer types with
increased numbers of up-regulated genes (purple) were in fact more sensitive (lie to the left of the mean IC50 line) than those with more down-regulated
genes (orange). f There is a statistically significant difference in the IC50s between basal breast cancer cell lines and luminal cell lines, indicating that basal
cell lines are more sensitive, as predicted. *Error bars represent s.d.
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Fig. 8 Master metabolic transcriptional regulators (MMTRs) distinguish BRCA molecular subtypes, and BRCA cell lines. a Unsupervised clustering of
luminal A (yellow) and basal-like (black) patients on the expression levels of all MMTRs of their unique pathways (listed in Fig 6e and f) create separate
clusters of patients. b MMTR analysis of the pathways unique to basal-like patients revealed a network of 14 MMTRs, the five most highly enriched are
shown here. c MMTR analysis of the pathways unique to luminal A patients revealed a network of 15 MMTRs, the five most highly enriched are shown
here. d Unsupervised clustering of 28 cell lines representing normal breast (n= 3) (green), basal breast cancer (n= 12) (black), and luminal breast
cancer (n= 13) (yellow) on all metabolic genes reveals a tight cluster of each of the distinct cell line types. e Unsupervised clustering of normal (green),
luminal (yellow), and basal-like (black) cell lines on the expression levels of all MMTRs of their unique pathways create separate clusters
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studies. To confirm overlap between GTF2B and ERG: K562 erythroblast; bone
marrow untreated from the Martens et al.64 study and GTF2B K562 erythroblast;
bone marrow untreated from the Pope et al.65 study were downloaded. Genomi-
cRange was then used to determine the overlap between these peaks in the same line.
Then, to determine ERG peaks in polyamine biosynthetic genes in prostate cancer cell
lines specifically, the VCaP; epithelium; prostate ERG-non-treated data from Sharma
et al.66 was downloaded and imported into the Interactive Genome Viewer (https://
software.broadinstitute.org/software/igv/) to visualize peaks in these genes. GTF2B
ChIP-seq data was not available for GTF2B in prostate cancer.

PAM50 BRCA analysis. The PAM50 is a method that has been previously
described in the literature50,51. The PAM50 classification of tumors within the
TCGA cohort was obtained51. This classification was then used to stratify patients
into four major groups: basal-like, HER2-expressing, luminal A, and luminal B.
Any patients with no classification within this file were removed from the analyses
and all data were preprocessed as outlined in the Pan-cancer DEG analysis section.
Post-normalization, all tumors still included underwent unsupervised clustering
based on the expression of all metabolic genes within the cohort. Additionally,
comparisons of patients within each cohort were then made with normal tissues to
obtain Pathway Scores (see Pan-cancer DEG analysis section) for each of the
patient cohorts (Supplementary Data 11). MMTR analysis was then performed to
determine MMTRs of uniquely dysregulated pathways within the basal-like and
luminal A subtypes. Patients from each of those subtypes then underwent unsu-
pervised hierarchical clustering based on the gene expression of those MMTRs of
uniquely dysregulated pathways.

BRCA cell line analysis. RNA-sequencing data was obtained for 28 different
normal breast, luminal breast cancer, and basal breast cancer cell lines56. All data
were preprocessed as outlined in the Pan-cancer DEG analysis section. Post-nor-
malization, all tumors still included underwent unsupervised clustering based on
the expression of all metabolic genes within the cohort. Additionally, comparisons
of the cell lines from each of those subtypes then underwent unsupervised hier-
archical clustering based on the gene expression of those MMTRs of uniquely
dysregulated pathways, from the patient data.

Drug screening data. The Genomics of Drug Sensitivity in Cancer database54

(https://www.cancerrxgene.org) was accessed to download detailed IC50 data for
phenformin in breast cancer cell lines. Cell lines were then split into luminal and
basal based on ATCC and literature searches. Those cell lines regarded as HER2+
were excluded. Mann–Whitney U -test was then applied to determine significance.
DeSigN55 (http://design.cancerresearch.my) was then used to determine a drug that
would target the CAC in an unbiased manner. Based on the hierarchical clustering
of TCGA patients based on the expression levels (fold change over normal), two
distinct clusters of cancer were determined, those that largely up-regulate the genes
within the pathway and those that down-regulate the genes. The signature (up-
regulated and down-regulated genes) was then input into DeSigN55 to identify a
drug of interest (Fig. 7d). The IC50 data for this drug was then downloaded for all
cell lines and analyzed for differences in sensitivity between the two CAC
expression groups, and luminal and basal breast cancer cell lines. Mann–Whitney
U tests were utilized to determine if there were significant differences between basal
and luminal cell line data.

Data availability
All TCGA data are available for download through Firehose, a web portal site that
has been developed by the Broad Institute (https://gdac.broadinstitute.org), aiming
to deliver automated analyses of the TCGA data to general users. Microarray data
can be downloaded from the NCBI Gene Expression Omnibus for prostate ade-
nocarcinoma (GSE21032), lung adenocarcinoma (GSE2514,), and breast adeno-
carcinoma (GDS3324). All cell line drug data can be downloaded from the Sanger
Genomics of Drug Sensitivity in Cancer database (https://www.cancerrxgene.org).
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