Classification:

- prédit la catégorie/classe d'un objet
- construit un modèle basé sur un jeu d'apprentissage et des valeurs (nom des catégories) et l'utilise pour classer des données nouvelles

Prédiction:

 modélise des données numériques pour prédire des valeurs inconnues ou manquantes

Applications

- diagnostique médical
- séquences codantes
- structure secondaire, tertiaire

• ...

Méthodes

- arbre de décision et forêt aléatoire
- classificateur bayésien (naïf ou réseau bayesien)
- analyse discriminante
- plus proches voisins
- règles d'association
- réseau de neurones (perceptron et deep learning)
- algorithme génétique
- machine à vecteur de support
- modèle de Markov
- ...
- Evaluation des performances

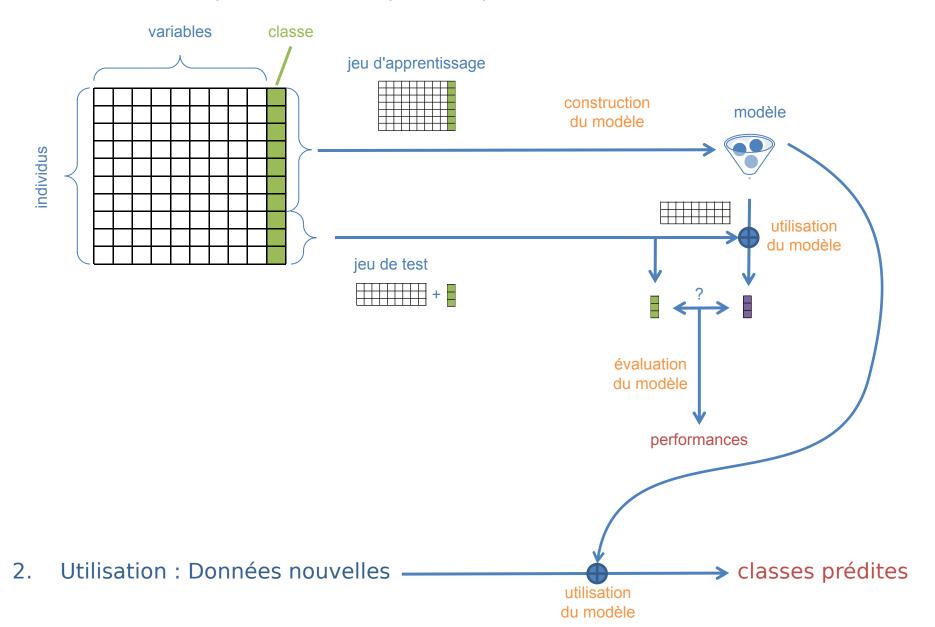
Classification: 2 étapes

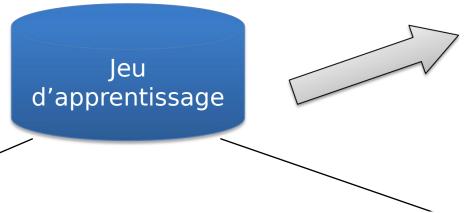
Construction du modèle

- jeu de données d'apprentissage : ensemble des objets utilisés pour la construction du modèle
- chaque objet appartient à une classe connue

- Utilisation du modèle pour classer des objets
 - classe connue : estimation de la précision du modèle
 - les classes connues du jeu d'apprentissage sont comparées à celles prédites
 - précision : pourcentage d'objets de jeu de test correctement classés
 - le jeu de test est indépendant du jeu d'apprentissage sinon risque de biais
 - classe non connue (objets nouveaux)

1. Construction : jeu de données pour lesquelles la classe est connue



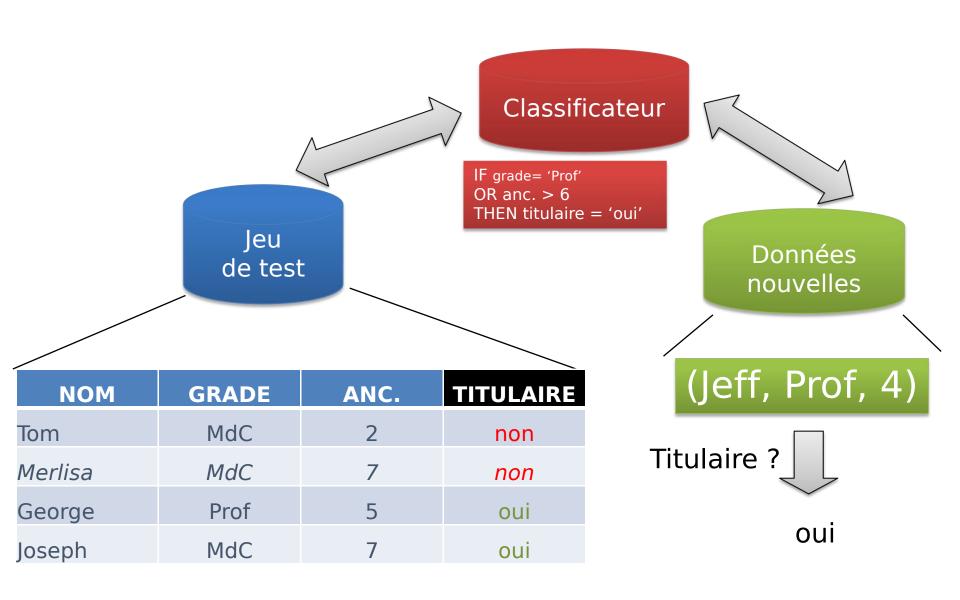


NOM	GRADE	ANC.	TITULAIRE
Mike	MdC	3	non
Mary	MdC	7	oui
Bill	Prof	2	oui
Jim	MdC	7	oui
Dave	MdC	6	non
Anne	MdC	3	non

algorithmes de classification

Classificateur (modèle)

IF grade= 'Prof'
OR anc. > 6
THEN titulaire = 'oui'



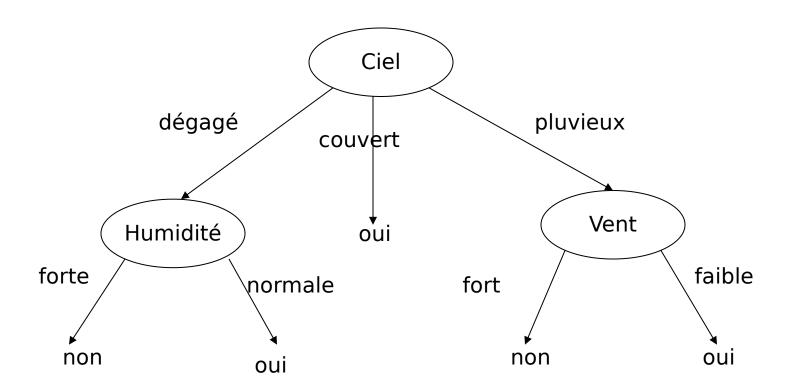
- Apprentissage supervisé (classification)
 - supervision : le jeu de données d'apprentissage fournit les classes des objets
 - les nouveaux objets sont classés en fonction du jeu d'apprentissage

- Apprentissage non supervisé (clustering)
 - Pas de classes définies
 - Étant donné un ensemble de mesures, d'observations, etc., essayer d'établir l'existence de classes ou de clusters dans les données

Considérations pour la classification

- Nettoyage des données
 - pré-traiter les données pour réduire le bruit et gérer les valeurs manquantes (si nécessaire)
- Analyse de pertinence
 - supprimer les attributs non pertinents ou redondants
- Transformation des données
 - généraliser ou normaliser les données
- Précision/performances des prédictions
- Efficacité et mise à l'échelle
 - pour construire le modèle
 - pour l'utiliser
- Robustesse
 - tolérance au bruit et aux données manquantes
- Interprétabilité
 - compréhension des données via le modèle
- Qualité des règles/du modèle
 - taille de l'arbre de décision
 - règles de classification compactes

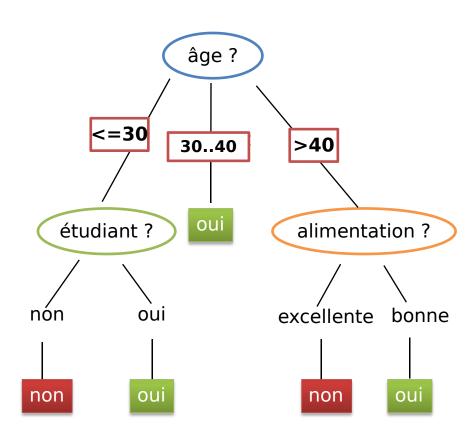
- Arbre de décision
 - nœuds internes : test sur un attribut
 - branches : résultat d'un test / valeur de l'attribut
 - feuilles : classe



- Génération de l'arbre en 2 étapes
 - Construction
 - au départ, tous les exemples du jeu d'apprentissage sont à la racine
 - partitionne récursivement les exemples en sélectionnant des attributs
 - Élagage
 - identification et suppression des branches correspondant à des exceptions ou du bruit
- Utilisation de l'arbre
 - teste les valeurs des attributs avec l'arbre de décision

Exemple : pratique la méditation ?

âge	stress	étudiant	alimentation	médite
<=30	élevé	non	bonne	non
<=30	élevé	non	excellente	non
3140	élevé	non	bonne	oui
>40	moyen	non	bonne	oui
>40	bas	oui	bonne	oui
>40	bas	oui	excellente	non
3140	bas	oui	excellente	oui
<=30	moyen	non	bonne	non
<=30	bas	oui	bonne	oui
>40	moyen	oui	bonne	oui
<=30	moyen	oui	excellente	oui
3140	moyen	non	excellente	oui
3140	élevé	oui	bonne	oui
>40	moyen	non	excellente	non



Algorithme glouton

- approche descendante récursive diviser pour régner
- au départ, tous les objets sont à la racine
- attributs catégoriels (les valeurs continues sont discrétisées à l'avance)
- les exemples sont partitionnés récursivement par la sélection d'attribut
- les attributs sont sélectionnés sur la base d'une heuristique ou d'une mesure statistique

Conditions d'arrêt

- tous les exemples pour un nœud appartiennent à la même classe
- plus d'attribut pour partitionner, dans ce cas la classe attribuée correspond à celle la plus représentée
- plus d'exemple à classer

Mesure pour la sélection d'attribut. Exemple : gain d'information (ID3 et c4.5)

- Sélectionne l'attribut qui a le gain le plus élevé
- Soient 2 classes P et N
 - Soit un jeu d'apprentissage S qui contient p objets de classe P et n objets de classe N
 - La quantité d'information nécessaire pour décider si un objet de S appartient à P ou N est définie comme

$$I(p,n) = -\frac{p}{p+n}\log_2\frac{p}{p+n} - \frac{n}{p+n}\log_2\frac{n}{p+n}$$

- Les valeurs de A partitionnent S en {S1, ..., Sv}
 - si S_i contient p_i exemples de P et n_i exemple de N, l'entropie ou l'information attendue nécessaire pour classer les objets dans tous les sous-arbres S_i est

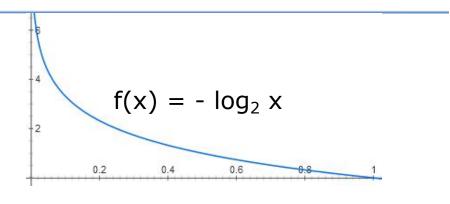
$$E(A) = \sum_{i=1}^{v} \frac{p_i + n_i}{p + n} I(p_i, n_i)$$

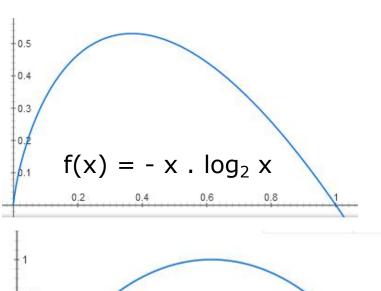
Le gain d'information de l'attribut A est

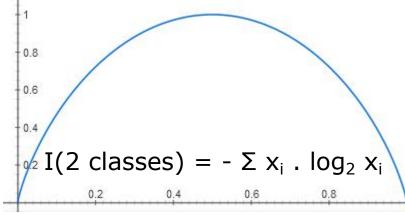
$$Gain(A) = I(p, n) - E(A)$$

$$f(x) = -x \log x$$

- si f1 = 0 et f2 = 1l = 0
- si f1 = f2 = 0.5l = 0.5 + 0.5 = 1
- si f1 = 0.4 et f2 = 0.6I = 0.53 + 0.44 = 0.97







Exemple : pratique la méditation ?

Classe P : médite = oui

Classe N : médite = non

• I(p,n) = I(9,5) = 0.940

âge	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3040	4	0	0
>40	3	2	0.971

Calcul de l'entropie

$$E(age) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.69$$

Gain d'information

$$Gain(age) = I(p, n) - E(age) = 0.25$$

De même

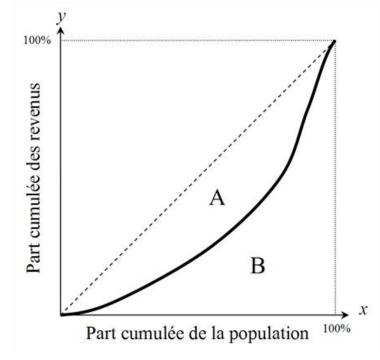
$$Gain(stress) = 0.029$$

 $Gain(etudiant) = 0.151$
 $Gain(alimentation) = 0.048$

- Coefficient de Gini
 - mesure la dispersion d'une distribution dans une population

0 : uniforme, 1 : biaisée

- utilisé pour mesurer
 l'inégalité de revenus
- G = A / (A+B)



 χ²: indépendance entre classe et modalités d'un attribut ?

- L'arbre généré risque de trop refléter le jeu d'apprentissage
 - trop de branches, certaines peuvent représenter des anomalies
 - précision faible pour des données nouvelles

2 approches

- pré-élagage : arrêter la construction de l'arbre tôt = ne pas partitionner un nœud si la mesure de qualité dépasse un seuil
 - difficulté de fixer le seuil
- post-élagage : supprimer des branches d'un arbre totalement construit = obtenir une séquence d'arbres progressivement élagués
 - utiliser un jeu de données différents pour décider du meilleur arbre élagué
 - principe MDL (minimum description length)
 - codage : règles associées à l'arbre + exceptions
 - supprimer la règle qui réduit le plus le codage tant que le codage diminue en taille

- Attributs définis sur des valeurs continues
 - définir dynamiquement les valeurs pour partitionner les données

- Tolérance aux données manquantes
 - attribuer la valeur la plus fréquente
 - attribuer une probabilité pour chaque valeur possible

- Principal défaut : sensibilité et sur-apprentissage
- Bagging (bootstrap aggregating)
 - bootstrapping
 - aggregating
- Forêts aléatoires
 - échantillonage des attributs pour décorréler les arbres construits
 - pas d'élagage : sur-apprentissage compensé par le bagging

classificateur

- = modèle
- = méthode + paramètres + jeu d 'apprentissage

partitionnement

 utilisation de jeux indépendants : apprentissage (2/3) test (1/3)

validation croisée

- diviser les données en k partitions
- utiliser k-1 partitions pour l'apprentissage et la dernière pour le test
- précision = nombre d'objets bien classés lors des k itérations / nombre d'objets
- leave-one-out (validation croisée avec k = s)

bootstrapping

 tirage aléatoire avec remise des objets constituant le jeu d'apprentissage

Performances du classificateur

Plus de 2 classes : Taux d'erreurs

Si seulement 2 classes : Taux d'erreurs = (FP+FN)/(P+N)

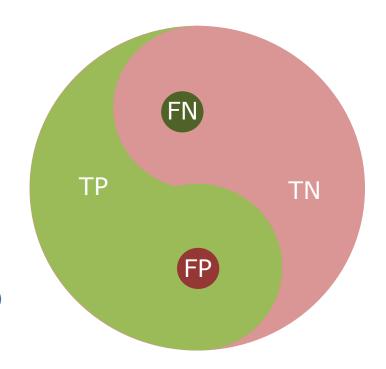
Positif (P=•+•), Négatif (N=•+•), Prédit Positif (PP=•+•), Prédit Négatif (PN=•+•), Vrai Positif (TP=•), Faux Positif (FP=•), Vrai Négatif(TN=•), Faux Négatif (FN=•)

réalité → prédiction ↓	P	N	Valeur Prédi Valeur Prédi Valeur Prédi Négat
PP	TP	FP	vo. pred
PN	FN	TN	Aslen Legal

Sensibilité = TP/P (eng: sensitivity) Spécificité = TN/N

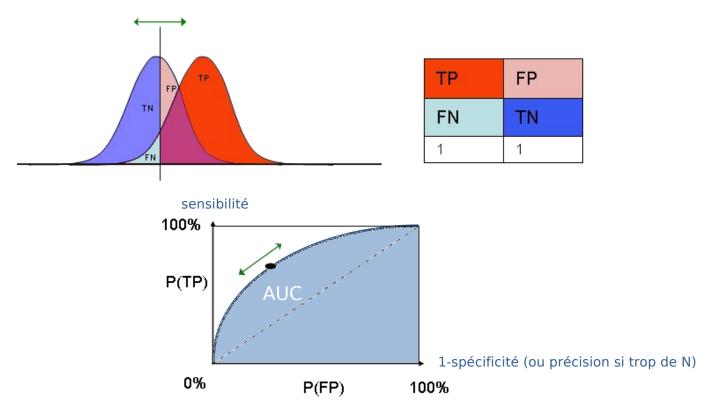
Précision = TP / (TP+FP) = TP/PP = TPP FDR = 1 - TPP = FP / PPVal. Préd. Nég. = TN/PN

Exactitude (accuracy)
= sensibilité.P/(P+N) + spécificité.N/(P+N)
= (TP+TN)/(P+N)



Courbe ROC-AUC

- ROC pour Receiver operating characteristic (= courbe sensibilité/spécificité)
- AUC pour Area Under the Curve (= aire sous la courbe)
- 2 classes
- Principe: variation d'un seuil
 - score pour la présence d'un domaine
 - α pour un test statistique



By kakau - Selbstgepinselt mit PowerPoint, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=10657501

- Apprentissage probabiliste : calcule explicitement les probabilités des hypothèses, une des approches les plus pragmatiques pour certains types d'apprentissage
- Incrémental : chaque exemple met à jour la probabilité qu'une hypothèse est correcte. Des connaissances a priori peuvent être combinées avec des données d'observation.
- Prédiction probabiliste : prédit plusieurs hypothèses, pondérées par leur probabilité

- Le problème de classification peut être formulé en utilisant les probabilités *a posteriori* :
 - $P(C|X) = \text{probabilit\'e que l'objet } X = \langle x_1, ..., x_k \rangle \text{ est de la classe } C$
- Exemple : P(non|ciel=dégagé,vent=fort,...)
- Idée : attribuer à l'objet X la classe qui maximise P(C|X)

Théorème de Bayes

$$P(C|X) = \frac{P(X|C) \times P(C)}{P(X)}$$

P(classe | observations) = P(observations | classe) . P(classe) / P(observations)

- Principe : attribuer la classe la plus probable
 - C_i tel que $P(C_i|X)$ est maximum C_i tel que $P(X|C_i) \cdot P(C_i) / P(X)$ est maximum
- remarque : P(X) est constant pour toutes les classes donc pas besoin de la calculer pour trouver la classe qui aura la plus forte probabilité
- P(C) = fréquence de la classe C
- Problème : rarement faisable en pratique

Assomption naïve : indépendance des attributs

$$P(x_1, \dots, x_k|C) = P(x_1|C) \times \dots \times P(x_k|C)$$

- si le *i*-ième attribut est catégoriel :
 P(x_i|C) est estimée comme la fréquence des échantillons qui ont pour valeur x_i et qui sont de classe C
- si le *i*-ième attribut est continu :
 P(x_i|C) est estimée avec une gaussienne
 - calcul facile

Ciel	Température	Humidité	Vent	Classe
dégagé	chaud	forte	faux	N
dégagé	chaud	forte	vrai	N
couvert	chaud	forte	faux	Р
pluvieux	moyenne	forte	vrai	Р
pluvieux	frais	normale	faux	Р
pluvieux	frais	normale	vrai	N
couvert	frais	normale	vrai	Р
dégagé	moyenne	forte	faux	N
dégagé	frais	normale	faux	Р
pluvieux	moyenne	normale	faux	Р
dégagé	moyenne	normale	vrai	Р
couvert	moyenne	forte	vrai	Р
couvert	chaud	normale	faux	Р
pluvieux	moyenne	forte	vrai	N

Ciel	Température	Humidité	Vent	Classe
dégagé	chaud	forte	faux	N
dégagé	chaud	forte	vrai	N
couvert	chaud	forte	faux	Р
pluvieux	moyenne	forte	vrai	Р
pluvieux	frais	normale	faux	Р
pluvieux	frais	normale	vrai	N
couvert	frais	normale	vrai	Р
dégagé	moyenne	forte	faux	N
dégagé	frais	normale	faux	Р
pluvieux	moyenne	normale	faux	Р
dégagé	moyenne	normale	vrai	Р
couvert	moyenne	forte	vrai	Р
couvert	chaud	normale	faux	Р
pluvieux	moyenne	forte	vrai	N

Ciel	
P(dégagé p) = 2/9	P(dégagé n) = 3/5
$P(couvert \mid p) = 4/9$	P (couvert n) = 0
P(pluvieux p) = 3/9	$P(\text{pluvieux} \mid n) = 2/5$
température	
P(chaud p) = 2/9	P(chaud n) = 2/5
$P(moyenne \mid p) = 4/9$	$P(moyenne \mid n) = 2/5$
P(frais p) = 3/9	P(frais n) = 1/5
humidité	
P(forte p) = 3/9	P(forte n) = 4/5
$P(normale \mid p) = 6/9$	$P(normale \mid n) = 1/5$
vent	
P(vrai p) = 3/9	P(vrai n) = 3/5
P(faux p) = 6/9	P(faux n) = 2/5
classe	
P(p) = 9 / 14	P(n) = 5 / 14

Ciel	Température	Humidité	Vent	Classe
dégagé	chaud	forte	faux	N
dégagé	chaud	forte	vrai	N
couvert	chaud	forte	faux	Р
pluvieux	moyenne	forte	vrai	Р
pluvieux	frais	normale	faux	Р
pluvieux	frais	normale	vrai	N
couvert	frais	normale	vrai	Р
dégagé	moyenne	forte	faux	N
dégagé	frais	normale	faux	Р
pluvieux	moyenne	normale	faux	Р
dégagé	moyenne	normale	vrai	Р
couvert	moyenne	forte	vrai	Р
couvert	chaud	normale	faux	Р
pluvieux	moyenne	forte	vrai	N

Un objet X =	<plu><pluvieux,< p=""></pluvieux,<></plu>	chaud,	forte,	faux>	?
--------------	---	--------	--------	-------	---

Ciel	
P(dégagé p) = 2/9	P(dégagé n) = 3/5
$P(couvert \mid p) = 4/9$	P (couvert n) = 0
P(pluvieux p) = 3/9	$P(\text{pluvieux} \mid n) = 2/5$
température	
P(chaud p) = 2/9	P(chaud n) = 2/5
$P(moyenne \mid p) = 4/9$	$P(moyenne \mid n) = 2/5$
P(frais p) = 3/9	P(frais n) = 1/5
humidité	
P(forte p) = 3/9	P(forte n) = 4/5
$P(normale \mid p) = 6/9$	$P(normale \mid n) = 1/5$
vent	
P(vrai p) = 3/9	P(vrai n) = 3/5
P(faux p) = 6/9	P(faux n) = 2/5
classe	
P(p) = 9 / 14	P(n) = 5 / 14

 $P(X|p).P(p) = P(pluvieux|p) \cdot P(chaud|p) \cdot P(forte|p) \cdot P(faux|p) \cdot P(p)$

Ciel	Température	Humidité	Vent	Classe
dégagé	chaud	forte	faux	N
dégagé	chaud	forte	vrai	N
couvert	chaud	forte	faux	Р
pluvieux	moyenne	forte	vrai	Р
pluvieux	frais	normale	faux	Р
pluvieux	frais	normale	vrai	N
couvert	frais	normale	vrai	Р
dégagé	moyenne	forte	faux	N
dégagé	frais	normale	faux	Р
pluvieux	moyenne	normale	faux	Р
dégagé	moyenne	normale	vrai	Р
couvert	moyenne	forte	vrai	Р
couvert	chaud	normale	faux	Р
pluvieux	moyenne	forte	vrai	N

Ciel	
P(dégagé p) = 2/9	P(dégagé n) = 3/5
$P(couvert \mid p) = 4/9$	P (couvert n) = 0
P(pluvieux p) = 3/9	$P(\text{pluvieux} \mid n) = 2/5$
température	
P(chaud p) = 2/9	P(chaud n) = 2/5
$P(moyenne \mid p) = 4/9$	P(moyenne n) = $2/5$
P(frais p) = 3/9	P(frais n) = 1/5
humidité	
P(forte p) = 3/9	P(forte n) = 4/5
$P(normale \mid p) = 6/9$	P(normale n) = 1/5
vent	
P(vrai p) = 3/9	P(vrai n) = 3/5
P(faux p) = 6/9	P(faux n) = 2/5
classe	
P(p) = 9 / 14	P(n) = 5/14

Un objet $X = \langle pluvieux, chaud, forte, faux \rangle$?

```
P(X|p).P(p) = P(pluvieux|p) \cdot P(chaud|p) \cdot P(forte|p) \cdot P(faux|p) \cdot P(p)
= 3/9 \cdot 2/9 \cdot 3/9 \cdot 6/9 \cdot 9/14 = 0.010582
P(X|n)\cdot P(n) = P(pluvieux|n) \cdot P(chaud|n) \cdot P(forte|n) \cdot P(faux|n) \cdot P(n)
= 2/5 \cdot 2/5 \cdot 4/5 \cdot 2/5 \cdot 5/14 = 0.018286
```

X est classé comme n

- ... rend le calcul possible
- ... mène à des classificateurs optimaux si elle est vérifiée
- ... mais c'est rarement le cas, car les attributs sont souvent corrélés
- tentative de pallier cette difficulté :
 - réseaux Bayésiens : combinent le raisonnement Bayésien avec la relation causale entre les attributs
 - arbres de décision : considère un seul attribut à la fois, en commençant par le plus important

- Théorème de Bayes
 - A = (a1, a2, ..., an)
 - B = (b1, b2, ..., bn)

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}.$$

- Pas faisable avec des milliers de variables
- Hypothèse de l'indépendance ou
- prise en compte partielle par modèle réseau
 - modélisation de l'influence d'un facteur de transcription sur ces cibles

Niveau d'expression de B dépend de celui de A

(influence)

• P(B/A)

 $A \longrightarrow B \longrightarrow C$

- Le niveau d'expression de C
 - dépend de celui de B
 - est indépendant de celui de A sachant B

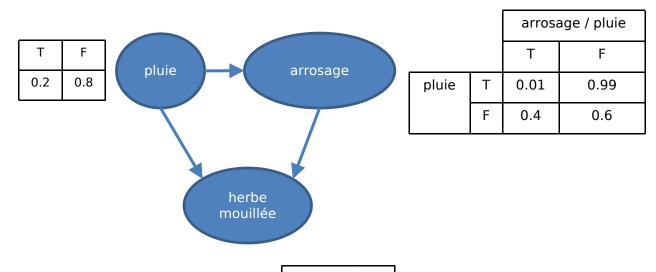
	cond1	cond2	cond3	cond4	cond5
A	off	low	high	low	low
В	off	low	high	high	low
С	off	off	low	high	low

P(B/A)

B	off (1)	low (3)	high (1)
off	1/1	0/3	0/1
low	0/1	2/3	0/1
high	0/1	1/3	1/1

observations

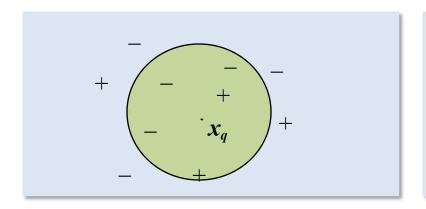
- Niveau d'expression de B dépend de celui de A (influence)
 - P(B/A)
- Le niveau d'expression de C
 - dépend de celui de B
 - est indépendant de celui de A sachant B
- Avantages :
 - capture l'aspect stochastique de la régulation
 - posibilité d'intégrer des régulations connues
 - peu de sur-apprentissage et robustesse
 - quantitatif (niveau d'expression) ou qualitatif (on/off)
- Inconvénient : Pas de cycle donc pas de boucle d'autorégulation

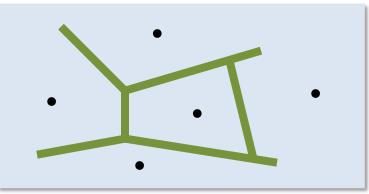


	mouilée		
arrosage	pluie	Т	F
F	F	0	1
F	Т	0.8	0.2
Т	F	0.9	0.1
T	Т	0.99	0.01

- Apprentissage basé sur des instances :
 - Stocke le jeu d'apprentissage et effectue le traitement quand une nouvelle instance doit être classée
- Approches typiques
 - k plus proches voisins (k nearest neighbors)
 - chaque objet représente un point dans l'espace
 - régression
 - loess, approximation locale
- Inférence des valeurs manquantes

- Chaque objet est représenté par un point dans un espace à n dimensions
- Les plus proches voisins sont définis en terme de distance (euclidienne, manhattan, ...) ou dissimilarité
- La fonction de prédiction peut être discrète/nominale ou continue
 - discrète : valeur la plus fréquente
 - continue : moyenne
- Diagramme de Voronoï : surface de décision induite par le plus proche voisin





- Pondération en fonction de la distance
 - pondère la contribution de chacun des k voisins en fonction de sa distance à l'objet à classer plus on est proche, plus on a de poids $w = \frac{1}{d(x_q, x_i)^2}$
- Robuste dans le cas de données bruitées

- Problème de dimensionnalité : la distance peut être dominée par des attributs non pertinents
 - solution : normalisation des dimensions ou élimination des attributs non pertinents

Types de données

- qualitatives ou nominales :
 - qualitatives
 - binaires, logiques
 - énumérations, facteurs
- numériques :
 - quantitatives
 - discrètes : entiers
 - continues
 - continues sur un intervalle
 - échelle linéaire, logarithmique, exponentielle
 - nombres complexes
 - ordinales, temporelles
 - géométriques, spatiales
- textuelles, sémantiques, ontologies
- mixtes

table de contingence

rangence		Objet j		
		1	0	
Objet i	1	а	b	
	0	С	d	

• coefficient simple d'appariement (invariant, si la variable est symétrique) b+c

$$d(i,j) = \frac{b+c}{a+b+c+d}$$

 coefficient de Jaccard (non invariant, si la variable est asymétrique)

$$d(i,j) = \frac{b+c}{a+b+c}$$

Exemple

Nom	Sexe	Fièvre	Tousse	Test-1	Test-2	Test-3	Test-4
Jacques	М	0	N	Р	N	N	N
Marie	F	0	N	Р	N	P	N
Jean	М	0	Р	N	N	N	N

- sexe est symétrique
- les autres sont asymétriques
- soit O et P = 1, et N = 0

$$d(jacques, marie) = \frac{0+1}{2+0+1} = 0.33$$
$$d(jacques, jean) = \frac{1+1}{1+1+1} = 0.66$$
$$d(jean, marie) = \frac{1+2}{1+1+2} = 0.75$$

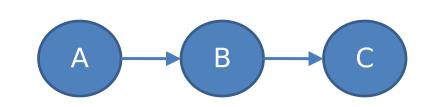
- généralisation des valeurs binaires : plus de 2 états
- méthode 1 : appariement simple
 - m: nombre d'appariements, p: nombre total de variables

$$d(i,j) = \frac{p-m}{p}$$

- méthode 2 : utiliser un grand nombre de variables binaires
 - création d'une variable binaire pour chacun des états d'une variable nominale
- Information mutuelle

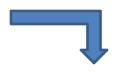
$$I(X,Y) = \sum_{y \in Y} \sum_{x \in X} \log \frac{p(x,y)}{p(x)p(y)}$$

$$I(X,Y) = \sum_{y \in Y} \sum_{x \in X} \log \frac{p(x,y)}{p(x)p(y)}$$



observations

	cond 1	cond 2	cond 3	cond 4	cond 5
A	high	low	high	low	low
В	high	low	high	high	low



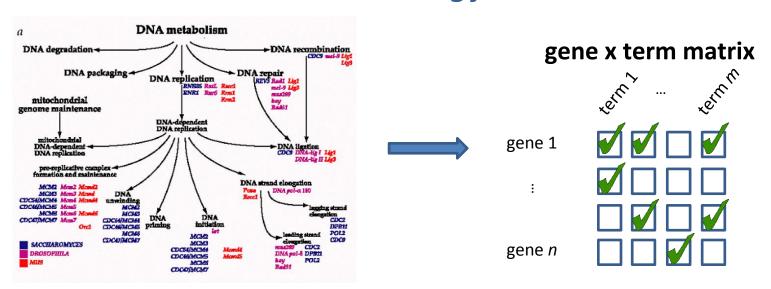
	b = low	B = high	total
a = low	2/5	1/5	3 / 5
A = high	0	2 / 5	2/5
total	2 / 5	3 / 5	1

ab ab ab aB aB aB Ab AB AB A B
$$> .4* \log(.4/(.6*.4)) + .2* \log(.2/(.6*.6)) + 0 + .4* \log(.4/(.4*.6))$$
 [1] 0.2911032

Profils phylogénétiques

génomes

Annotations, ex: Gene Ontology

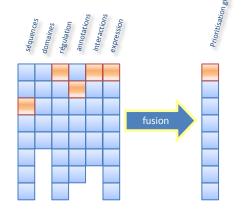


- l'ordre est important : rang
- peut être traitée comme une variable continue sur un intervalle
 - remplace x_{if} par son rang
 - transforme chaque variable sur [0,1] en remplaçant le i-ième objet de la f-ième variable

$$r_{if} = \{1, \dots, M_f\}$$

 calcule la dissimilarité en utilisant les méthodes de valeurs continues sur un intervalle

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$



Valeurs continues sur un intervalle, Fonction de distance

Distance de Minkowski :

$$d(i,j) = \sqrt[q]{|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + \dots + |x_{ip} - x_{jp}|^q}$$

avec $i = (x_{i1}, x_{i2}, ..., x_{ip})$ et $j = (x_{j1}, x_{j2}, ..., x_{jp})$ deux objets à p dimensions, et q un entier positif

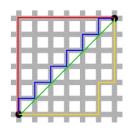
• si q = 1: distance de Manhattan (ou city block distance)

$$d(i,j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|$$

• si q = 2: distance euclidienne

$$d(i,j) = \sqrt{(x_{i1} - x_{j1}^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{ip} - x_{jp})^2}$$

- d(i,i) = 0
- $d(i,j) \geq 0$ (positive)
- d(i,j) = d(j,i) (symétrique)
- $d(i,j) \leq d(i,k) + d(k,j)$ (inégalité triangulaire)
- Dissimilarité basée sur un coefficient de corrélation
 - Pearson, Spearman (rangs)
 - d(x,y) = 1 corr(x,y)



source : wikipedia

Distance de Canberra (~ Manhattan pondérée)

$$d(p,q) = \sum_{i=1}^{n} \frac{|p_i - q_i|}{|p_i| + |q_i|}$$

- Similarité = cosinus de l'angle formé par les 2 vecteurs
- Distance de Mahalanobis
 - distance d'un point à un ensemble
 - x : vecteur/point
 - S : matrice de variance-covariance

$$d(x) = \sqrt{(x - \mu)^T S^{-1}(x - \mu)}$$

- mesure positive sur une échelle non linéaire, échelle exponentielle qui suit approximativement Ae^{BT} ou Ae^{-BT}
- Méthodes
 - les traiter comme des variables continues sur un intervalles : mauvais choix
 - appliquer une transformation logarithmique puis les traiter comme des variables continues sur un intervalle

$$y_{if} = log x_{if}$$

 les traiter comme des variables ordinales en traitant leur rang

- Les objets peuvent être décrits avec tous les types de données
 - binaire symétrique, binaire asymétrique, nominale, ordinale, ...
- Utilisation d'une formule pondérée pour combiner leurs effets

$$d(i,j) = \frac{\sum_{k=1}^{p} w_k d_k(i,j)}{\sum_{k=1}^{p} w_k}$$

• min-max: transorfmation depuis l'intervalle [min, max] vers l'intervalle [a,b]

$$v' = \frac{v - \min}{\max - \min}(b - a) + a$$

• z-score:

$$v' = \frac{v - \mu}{\sigma}$$

mise à l'échelle décimale

$$v' = \frac{v}{10^n}$$
 avec *n* le plus petit entier tel que max(|v'|)<1

- Normaliser les données : s'affranchir des unités de mesures
- écart absolu à la moyenne

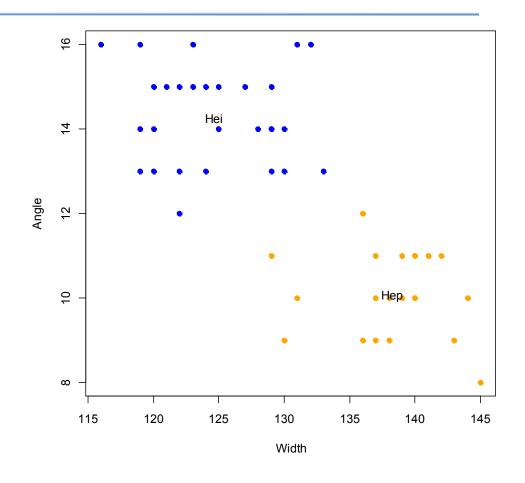
$$s = \frac{|x_1 - \mu| + |x_2 - \mu| + \dots + |x_n - \mu|}{n}$$

Calculer la mesure normalisée (z-score)

$$z_i = \frac{x_i - \mu}{s}$$

 L'utilisation de l'écart absolu est plus robuste que celle de l'écart type 2 familles de puces caractérisées par l'angle et la taille de leur édéage :

- Hei : Heikertingeri
- Hep: Heptapotamica



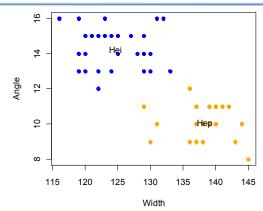
Objectif: combinaison linéaire des variables permettant de séparer au mieux les groupes dans un nouvel espace de représentation

Analyse discriminante

2 familles de puces caractérisées par l'angle et la taille de leur édéage :

• Hei : Heikertingeri

Hep: Heptapotamica



Objectif : combinaison linéaire des variables permettant de séparer au mieux les groupes dans un nouvel espace de représentation

dispersion intra-groupe : matrice de variance-covariance W_k $W = \frac{1}{n} \sum_k n_k \times W_k$ avec n le nombre d'individus et n_k le nombre d'individus de la classe k

éloignement entre les groupes : matrice de variance-covariance inter-groupes : B avec μ la moyenne globale et μ_k la moyenne de la classe k

dispersion totale : V = W + B

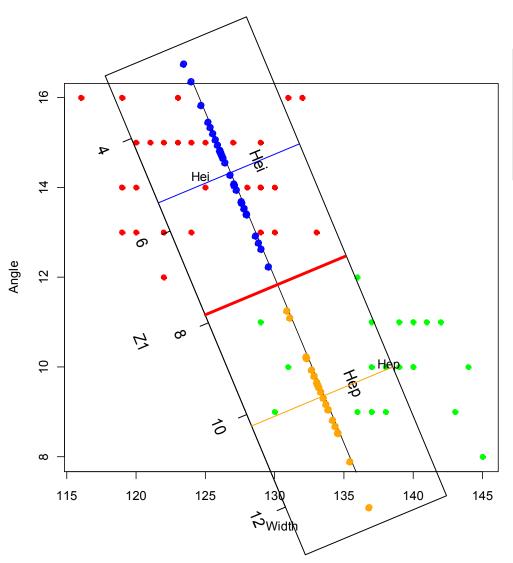
$$B = \frac{1}{n} \sum_{k} n_{k} (\mu_{k} - \mu)^{T} (\mu_{k} - \mu)$$

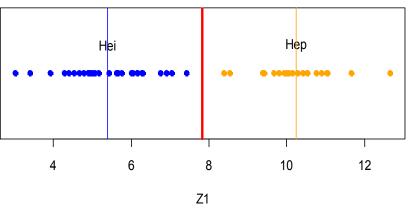
principe: trouver les axes factoriels qui maximisent l'éloignement des groupes par rapport à la dispersion totale

 Z_1 premier axe factoriel défini par le vecteur u_1 tel que l'on maximise

$$\frac{u_1^T B u_1}{u_1^T V u_1}$$

Solution : résolution de $V^{-1}Bu = \lambda u$





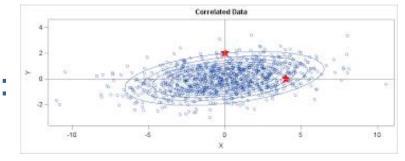
	u1
Width	0.1280690
Angle	-0.7393077

Règle bayesienne

$$P(C = c|X) = \frac{P(C = c) \times P(X|C = c)}{\sum_{i=1}^{k} P(C = c_i) \times P(X|C = c_i)}$$

Hypothèse homoscédasticité :
$$W = \frac{1}{n} \sum_k n_k \times W_k$$

Fonction de classement linéaire :

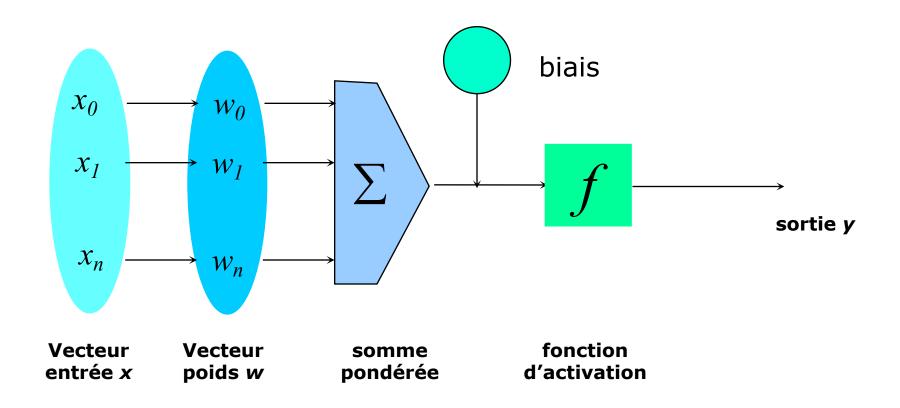


~ distance au centre de gravité qui prend en compte la variance

$$score(C = c, X) = -(X - \mu_c)^T W^{-1}(X - \mu_c)$$

- Pouvoir discriminant d'un axe factoriel
 - variance portée par l'axe / valeur propre
- Robustesse
 - peut fonctionner même si les hypothèses de départ de ne sont pas respectées

 vecteur x n-dimensionnel est intégré en y par le produit scalaire (x_i.w_i), le biais et la fonction d'activation

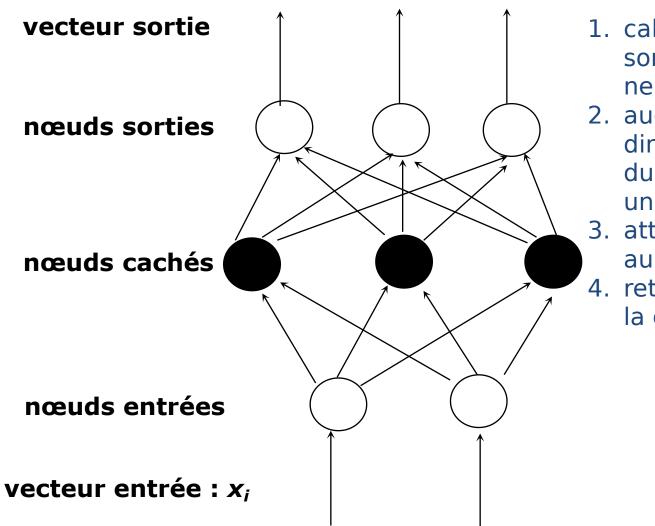


Objectif

 obtenir un ensemble de poids permettant de classer correctement (presque tous) les objets du jeu d'apprentissage

Étapes

- Initialiser les poids avec des valeurs aléatoires
- Passer les objets au réseau un par un
- pour chaque unité (neurone)
 - calculer l'entrée (combinaison linéaire de toutes les entrées)
 - calculer la sortie en utilisation la fonction d'activation
 - calculer l'erreur
 - mettre à jour le biais et les poids



- 1. calcul de l'erreur en sortie pour chaque neurone
- 2. augmentation ou diminution du biais et du poids pour obtenir une faible erreur locale
- 3. attribution d'une erreur au neurones précédents
- 4. retour à l'étape 2 pour la couche précédente

démo : http://playground.tensorflow.org/

Avantages

- précision souvent élevée
- robuste, marche lorsque le jeu d'apprentissage contient des erreurs
- sortie peut être valeur discrète, continue, ou un vecteur de plusieurs valeurs discrètes ou continues

Critiques

- apprentissage long
- difficile de comprendre le modèle
- difficile d'incorporer des connaissances