
Named after Carl Adam Petri who, in the early sixties, proposed a graphical and mathematical 
formalism suitable for the modeling and analysis of concurrent, asynchronous distributed 
systems. 
Widely used for modeling biological systems (more than 130 publications in PubMed since 2002) 
 

Simple form : a bipartite directed graph 
two types of nodes: 

• places represent conditions or resources  (ex: phosphorylated histidine kinase)  
• transitions represent activities, i.e., events that can change the state of the 
resources (ex: synthesis) 
 

directed arcs interconnect places and transitions 
• places exclusively connected to transitions 
• transitions exclusively connected to places 
 

tokens placed on places define the state of the Petri net 
 
An arc might be weighted: number of tokens that must be in the pre-place to enable 
the transition 

Petri net models 

Petri nets 



Places are passive nodes. They are indicated by circles and refer to conditions or 
states. In a biological context, places may represent: populations, species, organisms, 
multicellular complexes, single cells, proteins (enzymes, receptors, transporters, etc.), 
molecules or ions. Only places are allowed to carry tokens. 

Tokens are variable elements of a Petri net. They are indicated as dots or numbers 
within a place and represent the discrete value of a condition. Tokens are consumed 
and produced by transitions. In biological systems tokens refer to a concentration level 
or a discrete number of a species, e.g., proteins, ions, organic and inorganic molecules. 
Tokens might also represent the value of physical quantities like temperature, pH value 
or membrane voltage that effect biological systems. A Petri net without any tokens is 
called “empty”. The initial marking affects many properties of a Petri net. 

Petri net models 



Transitions are active nodes and are depicted by squares. They describe state shifts, 
system events and activities in a network. In a biological context, transitions refer to (bio-) 
chemical reactions, molecular interactions or intramolecular changes. Transitions 
consume tokens from its pre-places and produce tokens within its post-places according 
to the arc weights. 

Directed arcs are inactive elements and are visualized by arrows. They specify the causal 
relationships between transitions and places and indicate how the marking is changed by 
firing of a transition. 
Thus, arcs define reactants/substrates and products of a (bio-)chemical reaction. Arcs 
connect only nodes of different types. Each arc is connected with an arc weight. The arc 
weight sets the number of tokens that are consumed or produced by a transition. The 
stoichiometry of a (bio-)chemical reaction can be represented by the arc weights. 

Petri net models 



P1 T1 P2 

2 

input or pre-
place 

output or post-
place 

Pre-transition Post-transition 

Petri net models 

A Petri net with two places P1 and P2 et one 
transition T1. 
Two tokens must be present in P1 for the condition to 
be true. The transition will be enabled and may fire by 
removing the tokens from the pre-place P1 and adding 
a token to the post-place P2 pointed by the transition.  



To enhance the expressiveness of Petri nets, two other types of arcs:  

• test arc  (or read arcs) (activates the transition, does not consume tokens)       
• inhibitor arc (inhibits the transition)  

t1 is enabled if places A and B are sufficiently 
marks. After firing, tokens are consumed from 
place B but not from place A. 

t1 is enabled if place B is sufficiently marks 
and place A insufficiently marked . After 
firing, tokens are consumed from place B but 
not from place A. 

Petri net models 



Petri net and biochemical networks 

Standard Petri nets allow the representation of the essential components in biochemical pathways 
and they can be used to perform qualitative analysis (Reddy et al., (1996) Comput. Biol. Med. 26:9-24)). 
 

Metabolic pathway = interconnection of networks of enzymatic reactions (product of one reaction 
is the a reactant (or an enzyme that catalyzes) a next reaction. 

Petri net modeling of five type of reactions: 
 
Places = reactants, products or enzymes 
Transitions = reactions  
Arc weights = stoichiometric coefficients of the reactions 
 
Catalyzed reaction: the enzyme place is linked to the 
transition by a test arc 
Inhibited reaction: the enzyme is linked to the transition by 
an inhibitory arc (the transition is enabled when the place 
is not marked) 



Petri net models 

Firing a transition  
 

 A transition is enabled to fire if all its pre-places are sufficiently marked, contain at least 
the required number of tokens defined by the weight assigned to the arcs. 

 
 Results of the firing of an enabled transition: tokens of pre-places are consumed and 
new tokens are produced in its post-places. Their number are determined by the weight 
of the arcs going out of the transition. 

Grunwald et al., 2008 

Example: Pentose phosphate pathway 

The “token game” represents the dynamical evolution of the system 



Petri net models 

Initial marking M0 

p1 and t1 are connected through 
a test arc that means that p1 
marking governs the enabling of 
t1 but is not modified by the 
firing of t1 

The token of p2 is consumed. 
Four tokens are produced in p3. 

The new marking M1 allows the firing of t2 

new marking M1 new marking M2 

One token of p3 is consumed. 
One token is produced in p4. 

The new marking M2 does not allow the 
firing of t3 

Algebraic description of a Petri net 
a marking = a vector giving the number of tokens allocated to each place 
weighted arcs = definition of relation between a pre-place and a transition (preconditions) 
and between a transition and a post-place (postconditions) = Pre and Post matrices 

Example from Chaouiya ,2007 



Petri net models 

Algebraic description of a Petri net  
a marking = a vector giving the number of tokens allocated to each place 
weighted arcs = definition of relation between a pre-place and a transition (preconditions) 
and between a transition and a post-place (postconditions) = Pre and Post matrices 
incidence matrix = for each transition, the balance of its firing onto each place (difference 
between the number of tokens produced and the number of tokens consumed) 

Example from Chaouiya ,2007 



Petri net models 

Algebraic description of a Petri net 
The resulting marking M’ of the net after a firing sequence (transition that have been fired) is given by 
the state equation:  
 
where M is the marking before the firing sequence, C is the incidence  matrix and s is a vector that 
gives for each transition its number of occurrences.  

Example from Chaouiya ,2007 
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M’ = M + C   

In our example, the firing sequence is t1 and t2 :  

t1 and t2 have been fired 

Resulting marking M2 Initial  marking M0 



2

1

0

3

1

M

 
 
 
 
 
 

Petri net models 

Marking of the net after firing t1 and t2 

The marking graph: described the dynamical behavior from an initial marking, denoted R(M0) 

Standard Petri nets are discrete and non-temporized (time is implicit, the marking graph 
accounts for the possible sequence events). 

Example from Chaouiya ,2007 



Petri net models 

Formal definition: A standard Petri net is a quadruple N = (P, T, f, m0), where: 
 P, T are finite, non-empty, disjoint sets. P is the set of places. T is the set of transitions. 
 f: ((P x T)  (T x P))  N0 defines the set of directed arcs, weighted by non-negative integer 
values. F  (P x T)  (T x P) is called a flow relation of the net, represented by arcs with arrows 
from places to transitions or from transitions to places. f is a mapping that assigns a weight to an 
arc. 
 m0: P  N0 gives the initial marking. 

Notations: 
m(p) refers to the number of tokens on place p in the marking m. A place p is clean (empty, unmark) in m if m(p) = 0. 
A set of places is called clean if all places are clean, otherwise it is marked. 

 
The preset and postset of a node x  P  T and are defined as: 
  Preset: x := {y  P  T | f(y,x) ≠ 0} 

  Postset: x := {y  P  T | f(x,y) ≠ 0} 

 
For places and transitions, four types of sets: 

t preplaces of transition t (reaction's precursor) 
t postplaces of transition t (reaction's products) 
 p pretransitions of place p (all producing reactions of a component) 
p posttransitions of place p (all consuming reactions of a component) 
 

Generalized to a set of nodes X: 

  set of prenodes: X := x X x 

  set of postnodes: X := x X x 



Petri net models 

Definition : Firing Rule 
Let N = (P, T, f, m0) be a Petri net: 
 
• A transition t is enabled in marking m, written as           , if p  t : m(p) ≥  f(p,t), else it is 
disabled. 
• A transition t, which is enabled in m, may fire. 
• When t in m fires, a new marking m’ is reached, written as          m’, with p  P : 
   m’(p) = m(p) - f(p,t )+ f(t,p) 
• The firing happens atomically and does not consume any time. 

m t

m t



Petri net structural properties 

Structural properties depend only on the arrangement of places, transitions and arcs. They characterize 
the network structure and are independent of the marking. 
Initial model checking to prove that the model adheres to the assumption and modeling guideline. 

Extract from Tutorial Snoopy, 2011, 
M. A. Blätke 



Petri net structural properties 

Extract from Tutorial Snoopy, 2011, 
M. A. Blätke 



Typical net dynamical properties can be checked. They characterize the system behavior of a model, 
which depend on the qualitative network and on the initial marking. They are independent of the 
time-dependent dynamic behavior and thus independent of kinetic information.  
 
 
 Boundedness: For every place it holds that whatever happens, the maximum number of tokens on 
this place is bounded by a constant. It insures that, whatever the initial marking and the evolution of 
the net, the number of tokens in each place is bounded, i.e. limited. For metabolic networks, it means 
that no product can accumulate. 
 
 Liveness: For every transition it holds that whatever happens, it will always possible to reach a state 
where this transition gets enabled. In a live net, all transitions (biological processes and reactions) are 
able to contribute to the net behavior forever,  which precludes dead states. A dead state is a state 
where none of the transitions are enabled. 
 
 Reversibility: For every state it holds that whatever happens the net will always be able to reach 
this state again. In biology, it means that the initial state of a system can be reproduced by any 
possible state reached from the initial condition. 

Petri net qualitative properties 



Petri net qualitative properties 

Boundedness 

Formal definition: 
 
• A place p is k-bounded if there exists a positive integer number k, which represents an upper 
bound for the number of tokens on this place in all reachable markings of the Petri net: 
 
 
• A Petri net is k-bounded if all its places are k-bounded. 
• A Petri net is structurally bounded if it is bounded in any initial marking. 

0 0: : ( )k N m m m p k    

Extract from Tutorial Snoopy, 2011, M. A. Blätke 



Petri net qualitative properties 

Liveness 

Formal definition: 
 
• A transition t is dead in the marking m if it is not enabled in any marking m0 reachable from: 
 m’|m : m’(t) 
• A transition t is live, if it is not dead in any marking reachable from m0. 
• A marking m is dead, if there is no transition which is enabled in m. 
• A Petri net is deadstate-free, if there are no reachable dead markings. 
• A Petri net is live, if each transition is live. 

Extract from Tutorial Snoopy, 2011, M. A. Blätke 

Reversibility 

Formal definition: 
A Petri net is reversible if the initial marking can be reached again from each reachable 
marking: 
 
 

0 0:m m m m  



Petri net qualitative properties 

Place m0 m1 m2 

Enzyme 1 0 1 

Substrate 1 0 0 

Complex 0 1 0 

Product 0 0 1 

Reachable markings starting from initial 
marking m0 by playing the token game  

• Each place has an upper bound k equal to 1.  
• All place are 1-bounded, thus the resulting Petri net is 1-bounded 
• Marking m2 is dead, none of the translation can be enabled 
• The Petri net has a deadstate because of m2 

• The Petri net is not live because all transitions are note live 
• The Petri net is not reversible because the initial state m0 can not be reached from marking m2 

Extract from Tutorial Snoopy, 2011, M. A. Blätke 



Petri net qualitative properties 

Important structural motifs of Petri net: 
 Traps 
 Siphons 
 Invariants 

Trap: 
A trap is a subnet that catches tokens and retain at least one of them. The number of tokens in a trap 
can decreased but never reached zero. It is a state of places such that every transition that inputs from 
these places also outputs from one of these places. Once marked a trap remains marked. 
Cyclic structures in a biological system that are activated by an input should be represented in a model 
as a trap. 

Definition 
A set of places Q  P is called trap if Q  Q (the 
set of post-transitions is contained in set of pre-
transitions), i.e., every transition which subtracts 
tokens from a place of the trap, also has a post-
place in this set. 

Q = {t1} et Q = {t1,t2} thus Q  Q 
Token count in this trap remains the same by firing t1 but increases by firing t2  



Petri net qualitative properties 

Important structural motifs of Petri net: 
 Traps 
 Siphons 
 Invariants 

Siphon: 
A siphon is a subnet that releases all its tokens. A Petri net without siphons is live while a system in a 
dead state has a clean siphon. In biological terms, a siphon is a finite source of molecules or energy. 
It could also be a cycle that might produce molecules by consuming itself. 

Definition 
A non-empty set of places D  P is called siphon if 
D  D (the set of pre-transitions is contained in 
set of post-transitions), i.e., every transition which 
fires tokens onto a place in the siphon, also has a 
pre-place in this set. 

D = {t1} et D = {t1,t2} thus D  D 
Token count in this siphon remains the same by firing t1 but decreases by firing t2  



Petri net qualitative properties 

Summary 



Petri net qualitative properties 

Set of places : 
 
S1={p1,p2,p3} 
S2={p1, p2, p4} 
S4={p2, p3} 
S5={p2, p3 , p4} 
S3={p1,p2, p3 , p4} 

Pre-transitions of S1: S1 = {t1, t2, t4}  and post-transitions of S1: S1 = {t1, t2,t3,t4} 
Pre-transitions of S2: S2 = {t1,t3,t4}  and post-transitions of S2: S2 = {t1, t2,t3,t4} 
Pre-transitions of S4: S4 = {t1, t2,t4}  and post-transitions of S4: S4 = {t1,t4}   

Pre-transitions of S5: S5 = {t1, t3,t4}  and post-transitions of S5: S5 = {t1,t4}   

Pre-transitions of S3: S3 = {t1, t2, t3,t4}  and post-transitions of S3: S3 = {t1, t2, t3,t4}   

Thus S1 and S2 are siphons (S  S). S4 and S5 are traps (S  S). S3 verifies both 
conditions, S3 is both a siphon and a trap. 



Petri net qualitative properties 

Invariants: 
 
In Petri net context, invariants indicate states in the net graph that are not changed after a 
transformation or  a sequence of transformations. We can distinguished two type of 
invariants, place invariants and transition invariants. 

P-invariants (place invariants): it is  a set of places over which the weighted sum of tokens is 
constant and independent of any firing. Thus a P-invariant conserved the number of tokens. Then 
each place of a P-invariant is bounded. In the biological context, P-invariant can assure mass 
conservation and avoid an infinite increase of molecules in the model. 
 
A vector of places is called P-invariant if it is a non trivial non-negative integer solution of the 
linear equation system xT . C = 0 (C incidence matrix) 

 



Pre-condition matrix 
Association Dissociation Synthesis 

Enzyme 1 0 0 

Substrate 1 0 0 

Complex 0 1 1 

Product 0 0 0 

Post-condition matrix 
Association Dissociation Synthesis 

Enzyme 0 1 1 

Substrate 0 1 0 

Complex 1 0 0 

Product 0 0 1 

Incidence matrix (Post – Pre) 
Association Dissociation Synthesis 

Enzyme -1 1 1 

Substrate -1 1 0 

Complex 1 -1 -1 

Product 0 0 1 

Petri net qualitative properties 



Incidence matrix (Post – Pre) 
Association Dissociation Synthesis 

Enzyme -1 1 1 

Substrate -1 1 0 

Complex 1 -1 -1 

Product 0 0 0 

Vector x of places: 
 
 
Solution of xT . C = 0 
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Petri net qualitative properties 

2 solutions : P-invariant 1  x = (1, 0, 1, 0 )    {Enzyme; EnzymeSubstrateComplex} 

    P-invariant 2 x = (0, 1, 1, 1)      {Substrate; EnzymeSubstrateComplex ; Product} 
 

Each place is contained in at least one of the two P-invariants. Thus, the Petri net of our 
example is covered by P-invariants. 
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Petri net qualitative properties 

T-invariant: it is a sequence of transition  that reproduce an initial state, which 
enabled the firing of the transitions in the T-invariant. In the biological context, T-
invariants ensure that the model of biological system can reinitialize a certain initial 
state. Firing the transitions of a T-invariant leads to a steady state behavior. 

Example: after firing t1 and t2 the 
marking will be the same 

A vector of transition is called T-invariant if it is a non 
trivial non-negative integer solution of the linear 
equation system C . y = 0 (C incidence matrix) 
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Incidence matrix (Post – Pre) 
Association Dissociation Synthesis 

Enzyme -1 1 1 

Substrate -1 1 0 

Complex 1 -1 -1 

Product 0 0 1 

Transition vector y of places: 
 
Solution of C . y = 0 

Petri net qualitative properties 

Only one solution: 
T-Invariant 1 : {Association, Dissociation} 
As the transition Synthesis is not contained in the T-invariant, 
the Petri net is not covered by T-invariants  
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Petri net and genetic regulatory network : an example 

Analysis of the phage shock protein stress response in Escherichia Coli : The PsP response that responds 
to alterations in the bacterial cell envelope (Toni et al., BMC Systems Biology, 5: 69)  

Biological knowledge :  
• the psp genes in E. coli form the PspF regulon wich includes the psp operon (pspA, pspB, 
pspC, pspD and pspE genes), pspF and pspG genes. 

PspF is a transcription factor that activates the 
transcription  of the pspA-E operon (54 promoter) 
and pspG. The gene pspF is transcribed via a 70 
promoter. 

Under no stress condition PspA binds PspF which inhibits PspF 
ATPase activity. Thus the transcription of pspA-E operon and 
pspG is basal. 
Under stress condition, a stimulus is converted into a signal that 
is transduced  through PspB and PspC . This signal disrupts the 
PspA-PspF interaction and allows PspF to activate the 
transcription leading to the increase of concentration of several 
Psp Proteins. 



Petri net and genetic regulatory network: an example 

Known roles of Psp protiens : 
• PspA, PspD and PspG play a major role in switching cell metabolism to 
anaerobic respiration and fermentation 
• PspA and PspD are also involved in the repair of the damaged 
membrane 
• PspA, PspD and PspG down-regulate cell motility which in turn down- 
regulate the consumption of the proton motive force and maintain the 
energy usage 

Open questions upon the kinetics of signal transduction, function of Psp proteins and physiological 
responses like : 

• how does the response evolve over time ? 
• how quickly do cells respond to the stress when it is induced ? 
• how quickly does the membrane get repaired ? 
• how the system responds to the removal of stress ? 

Modeling of the network of interactions in mathematical frameworks to analyze the 
system behavior and to interpret the results in terms of biological implications. 



Petri net and genetic regulatory network: an example 

Kinetic parameters are unknown  qualitative modeling 
 
Construction of the model : assumptions and choices (what are the important biological elements that 
should be retained to capture the basic stress response dynamics)  construction of a simplified 
model. 

PspD, PspE and PspG : known role : physiological response but not described yet as being involved  
in the response regulation: discarded of the network 
 
Only PspA, PspB, PspC and PspF are retained. Moreover, PspB and PspC are represented as a 
complex BC. 
 
Proteins involved in the transduction and amplification of the stress signal are not required to 
capture the basic response: not explicitly modeled. 
 
Membrane : It can be intact or damaged when the stress acts on the membrane. To discretize the 
measurement of the damaged membrane, it will be modeled as consisting of the “intact 
membrane part” and the “damaged membrane part”. The damaged part will be expressed in 
percentage and this percentage will be translate into token number (maximum being 100) 



Petri net and genetic regulatory network: an example 

Petri net model construction 
 
Places : Components of the system that should be taken into account 

• stress 
• damaged membrane (dm) 
• intact membrane (im) 
• PspA (A) 
• PspB and PspC modeled as a complex (BC) 
• BCA complex (BCA) 
• BCAF complex (BCAF) 
• BCA complex with conformational changes (BcCcAc) 
• PspF (F) 
• Hexamer of PspF acting as transcription factor (TF) 
• Oligomer of PspA (36 proteins) involved in the membrane repair (olg) 



Petri net and genetic regulatory network: an example 

Petri net model construction 
 
Transitions: reactions between the system components that should be modeled 

• stress + intact membrane  stress + damaged membrane (tr1) 
• damaged membrane + PspA oligomer  intact membrane + PspA oligomer (tr2) 
•6 PspF  transcriptional factor (tr3) 
• transcriptional factor  6 PspF (tr4) 
• transcription factor  PspA (100) + complex BC (60 or 40) + transcription factor (tr5) 
• 36 PspA  oligomer (tr6) 
• PspA + complex BC  complex BCA (tr7) 
• complex BCA + PspF  complex BCAF (tr8) 
• BCA + damaged membrane  damaged membrane + complex BcCcAc (tr9) 
• intact membrane + complex BcCcAc   intact membrane + complex BCA (tr10) 
• damaged membrane + complex BCAF  damaged membrane + PspF + complex BcCcAc (tr11) 
• degradation de BCA (tr12) 
• degradation de BcCcAc (tr13) 
• degration oligomer (tr14) 
• degradation complex BC (tr15) 
• degradation PspA (tr16) 

The number of proteins have been deduced from the experimental ratio measured for mRNA production of PspA, 
PspB and PspC (100:60:40) . As BC was modeled 60 has been chosen but it could also be 40.  One part of produced 
PspA complexes with BC and this other part forms the oligomer by binding 36 proteins into a complex. 



Petri net and genetic regulatory network: an example 

Petri net model construction 
 
Assumptions: 

• once PspA forms a complex with PspB and PspC, it cannot be used anymore to form 
the oligomer. PspA is never released from the complex BCA. 
• no threshold for the percentage of damaged membrane in order to pass the signal. 
The signal will be stronger if a larger part of the membrane is damaged (more tokens 
in dm) and weaker for a less portion of damaged membrane 
• thus, rate of BCAF break-down and rate of BCA conformational change will be 
proportional to the percentage of damaged membrane. 
• number of PspF and related constructs ( F, TF and BCAF) is constant in cells. 
Therefore, production and degradation of PspF has been excluded from the model 



Resulting Petri net model 

tr1 

tr4 tr3 

tr2 tr1 

tr6 

tr7 

tr5 

tr9 tr8 

tr15 

tr10 

tr14 

tr13 

tr12 

tr11 

tr16 

(adapted from Toni et al., BMC Systems Biology, 5: 69)  

Weighted arcs according to the 
stoichiometry of the reaction 
Test arcs are represented by  



Petri net and genetic regulatory network 

Petri net model simplification: to avoid the estimation of a large number of unknown parameters 

tr4 tr3 

tr2 tr1 

tr6 

tr7 

tr5 

tr9 tr8 

tr15 

tr10 

tr14 

tr13 

tr12 

tr11 

tr16 

Modeling of BCA complex production 
simplified (production of A and BC not 
modeled) 

Production of TF not modeled anymore 

Complexes BCAF, BCA and BcCcAc are 
modeled has hexamer complexes in order 
to simplify the hexamer formation of the 
PspF complex which is the active form of 
TF. 

tr3, tr4, tr5 and tr7  have been summarized by: 
 
                  TF  TF + olg + 10 hBCA  
 
tr15 and tr16 (degradation of BC and A  
respectively)have been suppressed. 



Resulting simplified Petri net model 

(extracted from Toni et al., BMC Systems Biology, 5: 69)  

Initial marking : make sure that it will not lead to “deadlocks”, i.e., no transitions can be fired anymore. 
Choice M0 = (stress, dm, im, olg, hBCA, hBcCcAc, hBCAF, TF) = (1, 0, 100, 0, 0, 0, 20, 0) 
 



Petri net model: structural analysis 

Qualitative validation of the basic model structure : P- and T-invariants determination 

P-invariants: 
The numbers of tokens in stress, dm + im, hBCAF +TF are 
constant. However, as some places (hBCA, hBcCcAc and 
olg) don’t belong to P-invariant, the network is not covred 
in P-invariants. In theory, it means that those places are 
not bounded. In practice, for this case it does not matter. 

T-invariants: 
Every transition belongs at least to a T-invariant. Thus, the 
network is covered in T-invariants, meaning that starting 
with a marking M the sequence of transitions will be bring 
back the system at this initial marking M. 



Qualitative paradigm (QPN): the most abstract representation of a bio-molecular process (like a biochemical 
reaction network or genetic regulatory network) is qualitative and is minimally described by its topology. The 
behavior of such Petri nets forms a discrete state space. The standard semantics for QPN do not associate a 
time with transitions or the stay of tokens at places, and thus these descriptions are time-free. The qualitative 
analysis considers however all possible behavior of the system under any timing.  
Thus, the QPN model itself implicitly contains all possible time dependent behaviors. 
Timed information can be added to the qualitative description in two ways - stochastic and continuous. 

Stochastic paradigm (SPN): preserves the discrete state, i. e., preserve a discrete number of tokens on its place, 
but in addition associates a firing rate (waiting time) with each transition, which are random variables defined 
by probability distributions. The firing rates are typically state dependent and specified by rate functions. All 
reactions, which occur in the QPN, can still occur in the SPN, but their likelihood depends on the probability 
distribution of the associated firing rates.  Consequently, the system behavior is described by the same discrete 
space as in the QPN . Thus all qualitative properties valid in the QPN are also valid in the SPN, and vice versa. 
The underlying semantics is a Continuous-Time Markov Chain (CTMC), and stochastic simulation generates a 
random walk through the CTMC.  
Transitions get enabled if pre-places are sufficiently marked. Before firing of an enabled transition t  T, a 
waiting time has to elapse. The waiting time is an exponential distributed random variable Xt  [0,[ with the 
probability density function: 
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Petri net models 

an exponentially distributed firing rate (waiting time) with each reaction. 



Stochastic Petri net 

• Each transition gets its own local timer. 
When a transition becomes enabled (enough tokens in its pre-places), the local timer is 
set to an initial value computed by means of the corresponding probability distribution 
(in general, this value will be different for each run of simulation). The local timer is then 
decremented at a constant speed, and when the timer reaches zero, the transition is 
fired. If many transitions are enabled, a race of the next firing will take place. 

• Biochemical systems are prototypes for exponentially distributed reactions 
The firing rates of transitions will follow an exponential definition which could be 
described by a single parameter .  
The firing rate will be described by its own parameter  to specify its local time behavior. 
The waiting time is an exponential distributed random variable Xt  [0,[ with the 
probability density function: 
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Stochastic Petri net 

An higher value of  leads to a higher probability and then to a shorter waiting time . 
The probability increase also according to the marking of the pre-places. The more tokens are 
present in pre-places, the shortest will be the waiting time . 
  



Stochastic Petri net 

Example 1: 

transition t is enabled because its input place A is marked. A firing time 1 is thus chosen for t, drawn from the 
negative exponential distribution of parameter k xA = 2k, and a clock starts to countdown from t1 to 0. When the 
clock reaches 0, transition t fires.  A new marking is obtained xA = 1, xB = 1. 
After the firing, transition t is still enabled, but its rate has now become k xA = k. 
Consequently, its new firing time 2 will be selected from an exponential random variable different from the one 
out of which 1 was sampled. Again, a clock is set to countdown until the new firing time is reached. At that time, 
the marking is changed to xA = 0, xB = 2, where no transitions are enabled anymore and the evolution stops. 

Example 2: 

Transition t is enabled as both places A and B are not empty.  
In the initial marking of the model, there are six several independent ways in which the bimolecular reaction 
can occur, each one associated to one specific selection of the pair of molecules A and B that react. Thus, the 
rate associated to transition t in the initial marking is: k  xA  xB = 6k.  
After the firing, the marking is changed to xA = 2, xB = 1, xC = 1 
The subsequent firing of transition t will occur at a rate that is:  k xA xB =2k.  

k is the rate constant of the reaction 



One simulation run describes at least one path in the state space graph. 
 It is also possible to perform multiple simulation runs and average the results of all runs.  
Thus, an averaged time course will be computed. The more simulation runs are performed, the more 
precise is the averaged time course. All single simulation runs will fluctuate around the averaged time 
course. 

Stochastic Petri net 



Petri net models 

Continuous paradigm (CPN): replaces the discrete values of species in the QPN or SPN with continuous values, 
and hence is not able to describe the behavior of species at the level of individual molecules, but only the 
overall behavior via concentrations. Timed information is introduced by the association of a particular 
deterministic firing rate with each transition, permitting the continuous model to be represented as a set of 
Ordinary Differential Equations  (ODEs) which are typically non-linear, requiring numerical analysis methods. 
Unlike in the SPN, the concentration of a particular species in such a model will have the same value at each 
point of time for repeated computational experiments. The state space of CPN models is 
continuous and linear, and can be analyzed by, for example, using Linear Temporal Logic with constraints (LTLc) 
 



Different types of Petri nets: 
 

 qualitative Petri net: discrete space – level of molecules (number of tokens) 
 stochastic Petri net: discrete space - transitions fire after a probabilistic delay 
determined by a random variable 
 continuous Petri net: continuous space – ordinary differential equation for each 
place (concentration) 
 hybrid Petri net: combines stochastic and continuous Petri nets features (example: 
reactions with low rates considered as stochastic and reactions with high rates 
considered as continuous) 
 coloured Petri net: It allows the description of repeated interactions within a spatial 
context. 

Petri net models 


