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Early diagnosis of inborn errors of metabolism is commonly performed through biofluid
metabolomics, which detects specific metabolic biomarkers whose concentration is altered due to
genomic mutations. The identification of new biomarkers is of major importance to biomedical
research and is usually performed through data mining of metabolomic data. After the recent
publication of the genome-scale network model of human metabolism, we present a novel
computational approach for systematically predicting metabolic biomarkers in stochiometric
metabolic models. Applying the method to predict biomarkers for disruptions of red-blood cell
metabolism demonstrates a marked correlation with altered metabolic concentrations inferred
through kinetic model simulations. Applying the method to the genome-scale human model reveals
a set of 233 metabolites whose concentration is predicted to be either elevated or reduced as a result
of 176 possible dysfunctional enzymes. The method’s predictions are shown to significantly
correlate with known disease biomarkers and to predict many novel potential biomarkers. Using
this method to prioritize metabolite measurement experiments to identify new biomarkers can
provide an order of a 10-fold increase in biomarker detection performance.
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Introduction

The study of genetic metabolic disorders originated in the early
1900s with Sir Archibald Garrod’s discovery of the first inborn
errors of metabolism (IEM), alkaptonuria, pentosuria, cystinuria,
and albinism (Vangala and Tonelli, 2007). IEM are caused by
alterations of specific metabolic reactions and a few hundreds of
IEM affecting about 1 in every 5000 born babies are currently
characterized (Lanpher et al, 2006). Fortunately, recent advances
in metabolomic approaches enable an expanded newborn
screening that improves early diagnosis and treatment in
numerous IEM disorders (Lanpher et al, 2006).

Metabolomics, the study of the complete repertoire of small
molecules in cells, tissues and biological fluids, represents a

major and rapidly evolving research field in systems biology. It
has been fueled by the development of experimental platforms
such as gas chromatography and liquid chromatography-
based mass spectrometry that are capable of accurately
measuring hundreds of small molecules in biological samples
(Kaddurah-Daouk et al, 2008). These methods promise to
substantially advance our understanding of disease pathophy-
siology and advance the discovery of new diagnostic biomar-
kers for disease. Such metabolic biomarkers denote sets of
metabolites that show a consistent change in concentration
during a disease state and are hence effective diagnostic
means. Metabolomics offers several advantages over geno-
mics and proteomics as a tool for diagnosing and under-
standing disease (Vangala and Tonelli, 2007): (1) Metabolic
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biomarkers can be measured noninvasively in biofluids such
as plasma, urine and feces in a rather straightforward manner
(Seegmiller, 1968). (2) Changes in metabolite levels reflect the
actual metabolic state of a tissue and its histology, translating
the genotype and environmental factors into the phenotype
(Nicholson et al, 2002) (Urbanczyk-Wochniak et al, 2003).
(3) There is a relatively small number of biomarkers (B2500–
3000). Several IEM have already been characterized through
the identification of clinical metabolic biomarkers that can
explain the pathological phenotype (Ito et al, 2000). However,
with the expected surge in the scope and quality of
metabolomic measurements, metabolomics is destined to play
an even more central role in the near future as an efficient
diagnostic tool and as a safety evaluator of drug candidates.

The recent publication of the first Human metabolic network
model (Duarte et al, 2007), along with the detailed documenta-
tion of all known IEM in the OMIM database (McKusick, 2007),
have given us an opportunity to systematically predict potential
metabolic disease biomarkers on a large scale. Herewith, we
propose a new computational approach that predicts, for each
metabolic gene, a set of metabolites that are expected to show a
concentration change in biofluids after its knockout. The
method is based on the constraint-based modeling (CBM)
approach, which is commonly used to predict metabolic
phenotypes in microorganisms (Price et al, 2004) and
specifically the effects of gene knockouts (Segre et al, 2002;
Stelling et al, 2002; Shlomi et al, 2005). Recently, CBM has been
used to predict human tissue-specific metabolism (Duarte et al,
2007; Shlomi et al, 2008). Our approach differs from earlier
attempts to identify disease biomarkers, which mostly use data
mining techniques that analyze metabolomics data taken from
healthy and diseased subjects (Wagner et al, 2004; Yang et al,
2004; Kenny et al, 2005). As it is model based, the current
approach permits the prediction of large sets of diagnostic
biomarker patterns for many disorders, laying down a
computational parallel to the upcoming advances in meta-
bolomic measurements in biofluids. As a first validation of
our method, we apply it to predict changes in metabolite
concentrations due to dysfunctional enzymes in red-blood cell
(RBC) metabolism, whose dynamic behavior can be reliably
simulated through a kinetic model (Jamshidi et al, 2001). Then,
the method is applied to the genome-scale human metabolic
network model of Duarte et al, and its performance is
comprehensively evaluated based on various sets of known
biomarker extracted from different databases.

Results and discussion

A constraint-based approach for predicting
metabolic biomarkers

We present a new computational approach for systematically
predicting the pattern of metabolic biomarkers characterizing
each metabolic disorder whose causative gene is included in
the human metabolic network model (Duarte et al, 2007). Let a
boundary metabolite denote a metabolite that is known to be
taken-up or secreted between the intracellular and extracel-
lular compartments (as indicated in the network model). Let
an exchange interval denote a possible range of uptake and
secretion fluxes of a given boundary exchange interval. For

each metabolic disorder and each boundary metabolite, we
predict its exchange interval between human tissues and
biofluids, for both healthy and disease cases (Materials and
methods). This exchange interval is computed through a CBM
method called flux variability analysis (FVA) (Mahadevan
and Schilling, 2003), which accounts for the entire space of
feasible flux states that satisfy mass-balance stoichiometric
constraints and reaction directionality constraints (embedded
in the model of (Duarte et al, 2007)). For the healthy case, the
exchange interval is computed while the reactions affected by
the disease are constrained to be active, whereas for the
disease case, they are constrained to be inactive. By comparing
the predicted exchange interval between the healthy state and
the disease state for each boundary metabolite, one can
determine whether the pertaining boundary metabolite con-
centration in biofluids (termed biomarker) is expected to be
elevated, reduced or unchanged (see Materials and methods).
If the predicted changes are marked such that there is no
overlap between the exchange intervals of the healthy case and
the disease case, the predicted biomarker change is considered
to be highly confident.

An illustrative example of the predicted biomarker changes’
ranges and their underlying rationale for the healthy state and
some disease state is depicted in Figures 1A and B. The
predicted exchange intervals of metabolite M1 (M2) suggest
that its extracellular concentration is elevated (reduced) in the
disease case. The disjoint exchange intervals obtained for the
healthy case and the disease case for both M1 and M2 render
these predictions as highly confident. The exchange intervals
of metabolite M6 (M4) suggest that their extracellular
concentrations are elevated (reduced) in the disease case.
Examining, for example, the exchange interval of metabolite
M6 shows that in the healthy case, M6 can be either taken-up
from biofluids or secreted in a lower rate (as some of it is
required in the healthy state; Supplementary Figure 1). In the
disease case, M6 (synthesized through M5) can only be
secreted to biofluids. It should be noted that mass-balance
stoichiometric constraints that play an important role in
determining the exchange intervals of different metabolites
and are accounted for by the CBM method (and as will be
shown, play an important role in determining biomarker
changes in addition to the network topology) are not depicted
in this kind of illustration.

Validating the biomarker prediction method
through a small-scale kinetic model of RBC
metabolism

As a first validation of our method, we applied it to predict
metabolic biomarkers for enzyme deficiencies in human
erythrocytes, for which a detailed kinetic model (Jamshidi
et al, 2001) is readily available to simulate the dynamic
metabolic behavior after enzymatic perturbations. This kinetic
model consists of four basic classical pathways: glycolysis, the
pentose pathway, adenosine nucleotide metabolism, and the
Rapoport-Leubering shunt, accounting for 43 metabolites, 43
internal reactions, and 12 primary exchange reactions. We
applied this model to predict changes in extracellular
metabolite concentrations after a disruption to 43 enzyme-

Prediction of human metabolic biomarkers
T Shlomi et al

2 Molecular Systems Biology 2009 & 2009 EMBO and Macmillan Publishers Limited



catalyzed reactions in the model (i.e. simulating changes in the
steady-state behavior by iteratively solving the set of
differential equations specified in the model; Jamshidi et al,
2001; see Materials and methods). These simulations resulted
in a set of 156 metabolic biomarkers whose extracellular
concentration is either elevated or reduced in a perturbed
steady-state behavior.

Earlier studies have shown that CBM of RBC metabolism
correctly captures various aspects of the metabolic behavior
simulated through a kinetic model (Wiback and Palsson, 2002;
Durmus Tekir et al, 2006). Applying our constraint-based
method for the RBC model to predict changes in extracellular
metabolites after the knockouts of model reactions resulted
in a set of 85 biomarker predictions (see Materials and
methods). These biomarker predictions are significantly
correlated with the kinetic simulation results (hypergeometric
P-valueo7�10�11, comparing the predicted accuracy with a
random model), obtaining a precision of 0.73 (fraction of the
predicted biomarkers that are correct) and recall of 0.40
(fraction of the biomarkers that are correctly predicted;
Table I). This result testifies to the ability of our method to
correctly identify alterations in extracellular metabolite con-
centrations, relying solely on reaction stoichiometry and
directionality data.

Large-scale prediction and validation of
biomarkers for human metabolic disorders

We applied our method to the human metabolic network
model (Duarte et al, 2007) to predict biomarker changes for
304 metabolic disorders (documented in the OMIM database)
whose causative genes are included in the model (see
Materials and methods). The analysis resulted in a total of
3912 predictions of biomarkers’ changes involving 233
boundary metabolites (whose concentration is predicted to
change in at least a single disease), and 176 diseases (for which
at least a single biomarker change is predicted). Out of all

Table I Prediction accuracy of the biomarker prediction method based on a
comparison with predictions obtained through kinetic model of red-blood cell
metabolism, and based on comparisons with various experimental datasets

Precision Recall P-value

RBC Kinetic Model 0.73 0.40 o7�10�11

OMIM: Automatic 0.37 0.27 o7�10�12

OMIM: Manual 0.76 0.56 o4�10�13

Ramedis/HMDB 0.41 0.1 o5�10�5

A detailed comparison of the predictions versus the known biomarkers is
available in Supplementary Dataset 1.
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Figure 1 An illustrative example of the prediction of biomarker concentration changes. (A) Circular nodes represent metabolites, solid edges represent reactions.
The disease causing reaction is marked with a red cross. Out of six boundary metabolites in this network, only four metabolites (M1, M2, M4, M6) are predicted to show a
concentration change when the disease causing reaction is inactivated. (B) Concentration change predictions based on exchange interval comparisons: the healthy
state and disease state exchange intervals are colored black and red, respectively. Positive flux values represent metabolite secretion, whereas negative values
represent metabolite up-take. For example, the concentration of M2 (associated with V2) is predicted to be reduced with high confidence due to a substantial change in
the exchange interval. Similarly, M1 is predicted to be elevated with high confidence. M4 is reduced in the disease state as it must be secreted in the healthy case but is
only potentially secreted in the disease case. The concentration level of M5 and M7 is predicted to be unchanged between the healthy case and the disease case.
(C) The distribution of the number of the predicted alterations among the 176 disorders analyzed. (D) The distribution of predicted biomarker alteration patterns that are
jointly shared by a number of disorders. As shown, various disorders tend to have different sets of biomarkers (the histogram is skewed to the left).
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biomarker alteration predictions, 19% are with high con-
fidence. A high fraction of the disorders (42%) are predicted to
have very few biomarker changes (o6), whereas up to 61% of
the disorders are predicted to have o10 biomarkers
(Figure 1C).

The various disorders tend to have different sets of
biomarkers (e.g. only in a very few cases, the same set of
biomarkers correspond to more than three diseases;
Figure 1D), suggesting that large-scale biofluids’ metabolo-
mics may be effectively used for the diagnosis of metabolic
disorders. Notably, the majority of the predicted biomarkers
(129 metabolites out of 175 for which this information is
available) are known to be present in the blood and urine and
are hence readily available media for metabolomic analysis
(Human Metabolome Database (HMDB); Wishart et al, 2007;
Supplementary Figure 2).

To systematically validate the predictions, we extracted
biomarker data for all metabolic disorders documented in the
OMIM database, whose causing genes are included in the
model of Duarte et al (by automatic parsing of disease
description texts in the OMIM database; see Materials and
methods). Comparing this dataset with our predictions
showed a highly significant correlation (hypergeometric
P-valueo7�10�12), though with precision and recall levels
lower than those described above versus the kinetic RBC
model (Table I). Still, this correlation is quite remarkable,
considering the erroneous nature of the simple text-mining
method that underlies this validation dataset.

To derive a more refined biomarker dataset for validation,
we manually extracted biomarker data from the OMIM

database for a set of 17 inborn errors of amino-acid
metabolism (see Materials and methods). This manual
curation process permits a finer tuned resolution of problems
arising in the validation data, for example, from differences in
metabolite naming conventions. Furthermore, it allows one to
extract data on the precise specific enzymatic reactions that are
affected in each metabolic disorder, in cases where mutations
may disrupt the activity of multifunctional genes. A compar-
ison of this dataset to the model predictions again demon-
strated a fairly accurate level of prediction (hypergeometric
P-valueo4�10�13, precision¼0.76, recall¼0.56; Figure 2),
close to that shown above versus the kinetic RBC model
(Table I).

To further validate our prediction method, we extracted
biomarker data for a set of 29 rare metabolic disorders from the
Rare Metabolic Disease database (Ramedis; Töpel et al, 2006),
recording clinical measurements of metabolite levels in
biofluids, and from HMDB (Wishart et al, 2007; see Materials
and methods). Comparing the set of predicted biomarkers
alterations to this clinical dataset exhibited a highly statisti-
cally significant overlap (hypergeometric P-valueo5�10�5),
with moderate precision (0.41) but rather low recall (0.1)
(Table I). This lower accuracy level may result in part from the
lower quality of the pertaining clinical data; the latter is prone
to the influence of several nondisorder-specific factors (e.g. the
medical treatment the patient was subject to, or his nutritional
state). Indeed, cross-referencing these clinical biomarkers
with those reported by OMIM shows a rather low overlap
between the two different kinds of data sources (50% of the
biomarker-diseases associations marked in OMIM are found in

OMIM:605899 GLYCINE ENCEPHALOPATHY

OMIM:276710 TYROSINEMIA, TYPE III 

OMIM:276700 TYROSINEMIA, TYPE I 

OMIM:261630 PHENYLKETONURIA II 

OMIM:261600 PHENYLKETONURIA

OMIM:251000 METHYLMALONIC ACIDURIA

OMIM:250850 METHIONINE ADENOSYLTRANSFERASE DEFICIENCY 

OMIM:248600 MAPLE SYRUP URINE DISEASE 

OMIM:239500 HYPERPROLINEMIA, TYPE I 

OMIM:236200 HOMOCYSTINURIA

OMIM:235800 HISTIDINEMIA

OMIM:229100 FORMIMINOTRANSFERASE DEFICIENCY 

OMIM:222700 LYSINURIC PROTEIN INTOLERANCE

OMIM:220100 CYSTINURIA

OMIM:207800 ARGININEMIA

OMIM:203500 ALKAPTONURIA

OMIM:180960 S−ADENOSYLHOMOCYSTEINE HYDROLASE

L-A
rginine

L-L
eucin

e

L-P
henyla

lanine

L-C
ys

teine

L-G
lutamine

L-S
erin

e

L-A
sp

aragine

L-T
ryp

tophan

L-P
rolin

e

L-T
hreonine

L-A
sp

arta
te

Glyc
ine

L-G
lutamate

L-I
so

leucin
e

L-L
ys

ine

L-V
alin

e

L-M
ethionine

L-T
yro

sin
e

L-A
lanine

L-H
ist

idine

AHCY

HGD

ARG1

SLC7A9; SLC3A1

SLC7A7

FTCD

HAL

CBS

PRODH

DBT; DLD; BCKDHA; BCKDHB 

MAT1A 

MUT

PAH

QDPR 

FAH

HPD

GCSH; GLDC; AMT
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Ramedis-HMDB, but only 19% of the associations marked in
Ramedis-HMDB are found in OMIM). Notably, the agreement
between the different pertaining databases is of the order of
their agreement with the model’s predictions.

In-depth inspection of candidate biomarker
predictions

To explore the added value of our biomarker prediction
method over naı̈ve visual inspection of the network topology,
we manually inspected the corresponding network regions
affected by errors in amino-acid metabolism. We found that
although in a few cases it might have been possible to correctly
predict biomarkers just by observing the perturbed pathway in
a topological map representation of the human metabolic
network, in other cases such a simple topologically based
inference of a biomarker alteration would fail and lead to false
predictions. Thus, indeed, a method, accounting for the
network dependencies between pathways along with stoichio-
metry and reaction directionality constraints is of value. For
instance, in methionine adenosyltransferase deficiency
(OMIM: 250850), the potential elevation of methionine in
biofluids can be predicted in a straightforward manner as the
only reaction that catabolizes methionine is inactivated in this
disorder. However, in the cases of homocystinuria, hyper-
methioninemia, and tyrosinemia that we discuss next, the
network topology alone fails to identify the correct biomar-
kers.

An example of a correctly predicted biomarker that is
difficult to infer simply by observing the network topology

occurs in the case of homocystinuria, caused by the deficient
activity of Cystathionine b-synthase (CBS; E.C 4.2.1.22;
converting homocysteine and serine to cysteine; Figure 3).
In the healthy case, when CBS is functional, methionine is
taken-up from biofluids and is eventually converted to cysteine
by series of enzymes that includes CBS. Our method predicts
that the biofluids’ concentration of methionine is elevated
(with high confidence) in homocystinuria as reported in
OMIM, and that the concentration of cysteine is reduced in the
extracellular as reported in (Lee and Briddon, 2007) (Figure 2).
In this case, inferring the elevated extracellular concentration
of methionine simply based on the network topology is
impossible. This is because of the existence of an alternative
cyclic pathway that metabolizes methionine in homocystinur-
ia (the methionine salvage pathway; Cellarier et al, 2003), but
in fact, cannot change the methionine extracellular concentra-
tion due to mass-balance constraints. A similar scenario
pertains to the predicted elevated extracellular concentration
of methionine in hypermethioninemia caused by S-adenosyl-
homocysteine hydrolase deficiency (AHCY; E.C 3.3.1.1;
OMIM: 180960; Figure 3). Overall, although it is indeed
difficult to make such predictions a priori by inspecting the
network topology, such inspections can be telling and
informative a posteriori (when pointed to by the stochiometric
analysis). Other interesting examples are the cases of
tyrosinemia type I, type III, and Alkaptonuria (OMIM
276700, 276710, 203500, respectively), each caused by the
dysfunctional behavior of one out of five tyrosine degradation
pathways. A simple observation of the network topology may
suggest that the existence of several alternative tyrosine

5.3.1.23

2.4.2.28

2.5.1.16
2.5.1.22

4.1.1.50

2.5.1.6

2.1.1.13
2.1.1.5

4.2.1.22

4.4.1.1

2.1.1.8

3.3.1.1

Tissue

Biofluids

CBS

met

amet

ametamahcys

cyst

cys

serhcys 5mta

5mdr1p

5mdru1p

dkmpp 2kmb

AHCY

Uptake 0 Secretion

Elevated

Elevated

(high confidence)

Deficiency in AHCY

Deficiency in CBS

A B
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degradation pathways may suffice to compensate for the
inactivity of a single degradation pathway, and keep the
pertaining metabolites’ extracellular concentrations at bay
(Supplementary Figure 3). However, it turns out that due to
mass-balance stoichiometric considerations the network
cannot compensate for the inactivity of one degradation
pathway by routing more substrates to the alternative active
pathways, and, indeed, the elevated extracellular concentra-
tions of tyrosine are correctly predicted by our method in all
three diseases (Figure 2).

Although our method successfully identifies a large set of
the known biomarkers in a statistically significant manner, it
failed to identify a considerable number of others. Some of the
false predictions are expected to result from incompleteness of
the metabolic network as well as several simplifying assump-
tions that underlie our computational method and enable the
large-scale analysis of a network with thousands of reactions.
Specifically, our method assumes a steady-state metabolic
behavior (due to the lack of global enzyme kinetic data),
and lacks regulatory constraints, which obviously have
substantial influence on the activation of alternative pathways
under different physiological conditions (but are still largely
missing for the human case). In fact, the lack of cell type-
and tissue-specific regulatory constraints restricts the analysis
to a system that integrates the metabolic behavior of different
tissues. The latter prevents the prediction of cross-tissue
mechanisms that affect metabolite biofluid concentration
(e.g. a metabolite secreted in one tissue and taken-up by
another). However, although the method relies on several
simplifying assumptions, its predicted biomarkers are sig-
nificantly correlated with all tested validation datasets, with
the precision and recall varying between 0.37–0.76 and
0.1–0.56, respectively, depending on the quality of the dataset.
The probability that a biomarker prediction made by our
method would turn out to be correct is between 6–15.8 times
higher than random, across the various validation datasets
(based on random generation of biomarker sets and
a comparison of their prediction accuracy with our method).
This suggests that using our method to prioritize metabolite
measurement experiments can provide an order of a 10-fold
increase in biomarker detection performance. This result is
remarkably encouraging in face of the obvious model
simplifications discussed above.

An in-depth investigation of the false predictions can be of
significant value for further improving the metabolic network
model and the analysis methods. For example, in the case of
methylmalonate semialdehyde dehydrogenase deficiency
(OMIM 603178), in which a reaction (E.C 1.2.1.27) in the
valine and pyrimidine catabolic pathways is dysfunctional,
our method falsely predicts the potential elevation of valine in
biofluids instead of the elevation of its catabolic product
3-hydroxyisobutyric acid, as well as 3-hydroxypropionic acid
and b-alanine. An inspection of the underlying network
topology reveals that this false prediction results from missing
membrane transporters for these products and their related
derivatives, which prevents their exchange with surrounding
biofluids and hence indirectly limits the possible uptake of
their upstream substrate, valine (Supplementary Figure 4).
Incorporating a putative transporter of 3-hydroxyisobutyric
acid from mitochondria to cytoplasm and from there to the

extracellular environment in the model, enables our method to
correctly predict the increased secretion rate of hydroxyiso-
butyric acid in this disorder (instead of the increased
concentration of its upstream substrate, valine). Similarly,
the inclusion of a transporter for 3-hydroxyisobutyric acid and
a mitochondrial transporter for its derivative, malonate
semialdehyde, leads to a prediction of decreased uptake rate
of 3-hydroxyisobutyric in these disorders (reflecting an
increased biofluid concentration), and to correctly predicting
the elevated concentration of b-alanine. These results suggest
a future application of the biomarker prediction method for
automatically identifying missing reactions in the model, in
line with a previous approach for refining genome annotation
(Reed et al, 2006).

In other cases, the lack of regulatory constraints leads to
false predictions. For example, the model fails to predict the
elevation in extracellular concentration of arginine in argini-
nemia (OMIM 207800). The latter elevation is caused by
a dysfunctional type I arginase (ARG1; E.C 3.5.3.1), which
disrupts the conversion of arginine to urea and ornithine. This
prediction failure arises from the existence of several
additional alternative pathways that catabolize arginine (e.g.
converting it either to N-hydroxyarginine, guanidinoacetate,
and ornithine, or transporting it to the mitochondria) and
maintain the same predicted uptake rate of arginine when
ARG1 is dysfunctional. In reality, arginine catabolism through
the mitochondria (through the type II arginase ARG2) is likely
not to be able to fully compensate for the loss of ARG1 due to
the low expression level of ARG2 compared with that of ARG1
in the liver (Levillain et al, 2005; Cline et al, 2007). Specifically,
these erroneous predictions are probably caused by the current
lack of tissue-specific regulatory constraints. Such prediction
errors may be corrected by incorporating regulatory con-
straints within the model (Covert et al, 2004), or by
incorporating tissue-specific expression data (Akesson et al,
2004; Duarte et al, 2007; Shlomi et al, 2008).

Although this paper focused on predicting metabolic
biomarkers for known IEM, we additionally applied our
approach to predict biomarkers for the knockouts of all other
genes present in the metabolic model, that is, those that are not
known to cause metabolic disorders but some may potentially
be discovered to do so in the future. This analysis, covering an
additional set of 872 genes from the model of Duarte et al,
resulted in a total set of 9567 biomarkers alterations, which are
available for inspection and future validation as Supplemen-
tary Dataset 1. To provide means for further studying the
mechanisms by which a biomarker’s extracellular concentra-
tion is altered, we created network visualizations (through the
Cytoscape tool (Cline et al, 2007)) of the metabolic alterations
resulting from the knockout of each gene in the network.
These are available for download from the supplemental
website: www.cs.tau.ac.il/~shlomito/biomarkers.

In summary, this study presents a generic approach for the
large-scale prediction of specific biomarkers that are elevated
or reduced in biofluids. Future work should aim at extending
the model to include additional metabolic pathways, for
example, by integrating it with other large-scale networks such
as the Edinburgh human metabolic network reconstruction
(Ma et al, 2007). On the long run, an integrated human
metabolic-regulatory reconstruction in the lines of that of
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(Covert et al, 2004) will further improve the predictions in
cases where the predicted activation of alternative pathways is
in discordance with their real biological activity. This will
additionally require the usage of computational methods for
solving such integrated models (Shlomi et al, 2007). Building
upon the basic approach presented here, these approaches
may further advance the search for reliable model-driven
predictions of metabolic biomarker alterations on a genomic
scale.

Materials and methods

A CBM approach for predicting metabolic
biomarkers

Our method is applied to the genome-scale human metabolic network
model of (Duarte et al, 2007). The model consists of 320 boundary
metabolites that can be taken-up or secreted from human tissues
through pseudo-reactions called exchange reactions. A positive flux
through an exchange reaction represents the secretion of the boundary
metabolite, while a negative flux represents its uptake. This model
defines a space of feasible flux distributions that satisfy mass-balance
constraints (embedded in the stoichiometric matrix S) and flux
directionality constraints (embedded in the flux bound vectors nmin,
nmax), as shown below in equations (1) and (2). Nonlinear thermo-
dynamic constraints that are computationally harder to consider were
not accounted for (Beard et al, 2002). We define the exchange interval
for a boundary metabolite by determining the minimal and maximal
value of its exchange reactions. The minimal and maximal values of
an exchange reaction i are computed using FVA (Mahadevan and
Schilling, 2003) by solving the following two linear programming
optimization problems:

Min vi or Max vi

s:t

Sv ¼ 0

ð1Þ

vminpvpvmax ð2Þ
For each metabolic reaction r and every boundary metabolite m in the
model, we compute the exchange interval of m when r is forced to be
active (representing the healthy case), and when r is forced to be
inactive (representing the disease case). To force r to be active in the
healthy case, we constrain its flux to be larger than a flux activity
threshold, denoted e, and compute the forward exchange interval Hr,m

þ .
For reversible reactions, we also constrain the flux to be lower than�e,
and compute the backward exchange interval Hr,m

� . The healthy
exchange interval Hr,m can be determined by taking the union of the
forward and backward exchange intervals. However, as missing
thermodynamic constraints in the model (which restrict reactions’
directionality) may cause the backward exchange interval to falsely
account for infeasible metabolic states, we tested a second method for
computing Hr,m, which considers the backward interval only in cases
where the forward interval is predicted to be zero. Testing both
methods for computing the healthy exchange interval showed a
significant advantage to the second method while comparing our
prediction with the clinical data obtained from Ramedis (yielding a
precision that is 12% higher than that of the first method), and has
hence been used in all further analysis. The activity threshold ewas set
to a value of 1, and other thresholds in the range of 0.3–1 did not
substantially change our results (less then 2% change in the
predictions). To force reaction r to be inactive we simply constrain
its flux to zero and compute the exchange interval Dr,m. The
commercial CPLEX solver was used for solving LP problems, on a
Pentium-4 machine running Linux in dozens of milliseconds per each
individual problem.

Metabolic biomarkers are predicted based on a comparison of
exchange intervals between the healthy case and the disease case. For
exchange intervals A¼[a1,a2] and B¼[b1,b2], we define:

AoB if ða2ob1Þ;

and

ApB if ða1ob1 and a2pb2Þ or ða1pb1 and a2ob2Þ:

A metabolite m is predicted to be a biomarker of reaction r with an
elevated extracellular concentration, if Hr,mpDr,m, and with a reduced
extracellular concentration if Dr,mpHr,m. Biomarkers predicted with
high confidence are determined similarly, but with the ‘o’operator.
To consider only significant changes between exchange intervals, a
difference in flux, denoted aob, is considered only when a is at least
10% lower than b. Selection of different sensitivity thresholds in the
range of (5–15%) did not substantially alter our results (causing a
change of less then 2% in our total predictions).

The prediction of biomarker alterations for gene knockouts that
disrupt the activity of several reactions was performed by considering
all biomarkers predicted for the affected reactions (based on the gene-
to-reaction mapping in the model of Duarte et al and the list of disease
causing genes extracted from OMIM given in Online Supplementary
Dataset 1). In case of inconsistency between predicted elevated or
reduced extracellular concentrations of a metabolite (once different
reactions associated with the same gene are inactivated), we
determine the biomarker state based on a majority rule, and consider
it to be unchanged in case of a tie.

Validation using the RBC kinetic model

The RBC kinetic model consists of 43 metabolites, 43 internal
reactions, and 12 primary exchange reactions (Jamshidi et al, 2001).
The set of differential equations, describing metabolite concentration
dynamics, were solved through Matlab’s ‘ode15s’ solver. Enzyme
deficiencies were simulated by modifying the maximal rate constant of
each enzyme in turn to 10% of its original value.

Automatic extraction of biomarker data from the OMIM
database
A list of genetic metabolic diseases along with their causing genes was
obtained from the OMIM database (McKusick, 2007). Biomarker data
were extracted by parsing the disease description field in the OMIM
database in search for metabolite names along with a mentioning of
biofluids (e.g. plasma, urine). A dictionary of metabolite synonyms
extracted from HMDB was used to resolve naming convention issues
(Wishart et al, 2007).

Manual curation of biomarker data for amino
acid-associated disorders
A set of in-born errors of amino-acid metabolism was obtained from the
ICD-10 catalog of metabolic diseases (sections: E70–E72) as classified by
the World Health Organization (World Health Organization, 2004). This
set was reduced to include disorders that are cataloged in OMIM by their
explicit ICD-10 name and are associated with a model gene (60
disorders). An additional 15 disorders that were predicted by our
method to affect amino acids were added to this set. The known
biomarkers of the amino acid-associated disorders compiled above were
manually extracted from the disease description field in the OMIM
database. The set of disorders was further filtered to include only the
disorders that were reported to show a concentration change in at least
one of the model’s boundary metabolites. This resulted in a final set of 17
disorders that composed the validation set (Supplementary Dataset 1).

Clinical measurements of biomarkers
The Rare Metabolic Disease database (Ramedis) hosts an extensive
set of patients’ clinical data including measurements of metabolite
concentration level in biofluids for 74 rare metabolic diseases (Töpel
et al, 2006). Further data were obtained from HMDB, which records for
each metabolite a list of normal and abnormal concentration levels in
biofluids covering a set of 320 disorders (Wishart et al, 2007). Mining
these databases for disorders that are associated with model genes
and metabolites, as well as show a consistent view of metabolite
concentration changes in both databases, resulted in a set of 29
metabolic disorders (Supplementary Dataset 1).
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