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1.  Introduction
Self-assembly reactions account for the overwhelming 
majority of the reaction events occurring in the cell. Most 
eukaryotic proteins function normally in complexes and 
self-assembly of these complexes is a key step in nearly 
all major cellular functions [8]. Examples of processes 
critically dependent on self-assembly include genome 
replication [19, 147, 172, 195]; gene transcription and 
transcript degradation [19, 111, 127]; protein synthesis 
and degredation [53, 112]; cell movement and shape 
control [34, 45, 81, 200]; cell-to-cell communication 
including gap-junction assembly and regulation [188]; 
formation of membrane complexes such as pore-
forming toxins [12]; and mechanotransduction [9, 
198, 202]. Through these processes, the assembly and 
disassembly of molecular complexes and machines 
plays a crucial role in essentially all regulatory processes 
in cell biology. Given the centrality of self-assembly 
to cell biology, one cannot hope to develop truly 
comprehensive quantitative models of systems biology 
without tackling self-assembly. Yet self-assembly has 
until recently been largely absent from major efforts 
at developing general systems biology modeling tools 

(e.g. [60, 65, 82, 108, 146, 160, 181, 182, 185]) or handled 
only with one-off special cases for particular systems of 
importance (e.g. [59, 96, 199]). Even the most ambitious 
efforts at large-scale biochemical modeling largely focus 
on traditional enzymatic chemistry or transcriptional 
dynamics and only implicitly model the self-assembly 
reactions involved in those processes (e.g. recent 
comprehensive models of whole-cell or whole-organism 
transcriptional and metabolomic modeling [18, 189]). 
This situation is beginning to change as some major 
systems biology tools (e.g. [54, 68, 69]) and modeling 
efforts [96] have begun to incorporate methods suitable 
to complex self-assembly, but major challenges remain.

These challenges of self-assembly modeling largely 
arise from the extremely large space of possible path-
ways accessible to the intermediate species of a self-
assembly reaction network. The number of possible 
reaction trajectories by which a set of free monomers 
can assemble into a complex grows in general expo-
nentially in the complex size, leading to an enormous 
combinatorial explosion in pathway space for even 
moderate-sized assemblies and astronomical numbers 
for large complexes, such as virus capsids or cytoskeletal  
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Abstract
Molecular self-assembly is the dominant form of chemical reaction in living systems, yet efforts 
at systems biology modeling are only beginning to appreciate the need for and challenges to 
accurate quantitative modeling of self-assembly. Self-assembly reactions are essential to nearly 
every important process in cell and molecular biology and handling them is thus a necessary step in 
building comprehensive models of complex cellular systems. They present exceptional challenges, 
however, to standard methods for simulating complex systems. While the general systems biology 
world is just beginning to deal with these challenges, there is an extensive literature dealing with 
them for more specialized self-assembly modeling. This review will examine the challenges of self-
assembly modeling, nascent efforts to deal with these challenges in the systems modeling community, 
and some of the solutions offered in prior work on self-assembly specifically. The review concludes 
with some consideration of the likely role of self-assembly in the future of complex biological system 
models more generally.

PAPER
2017

Original content from 
this work may be used 
under the terms of the 
Creative Commons 
Attribution 3.0 licence.

Any further distribution 
of this work must 
maintain attribution 
to the author(s) and the 
title of the work, journal 
citation and DOI.

RECEIVED  
2 December 2016

REVISED  

21 March 2017

ACCEPTED FOR PUBLICATION  

12 April 2017

PUBLISHED   
23 May 2017

OPEN ACCESS

https://doi.org/10.1088/1478-3975/aa6cdcPhys. Biol. 14 (2017) 035003

publisher-id
doi
mailto:russells@andrew.cmu.edu
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://crossmark.crossref.org/dialog/?doi=10.1088/1478-3975/aa6cdc&domain=pdf&date_stamp=2017-05-23
https://doi.org/10.1088/1478-3975/aa6cdc


2

M Thomas and R Schwartz﻿

networks. This is problematic for experimental study 
of assembly systems, as it is rarely possible to discrimi-
nate experimentally among these pathways except 
at a coarse level, particularly for highly symmetric or 
repetitive structures. It likewise creates problems for the 
most popular modeling methods. Mass action differ
ential equation (DE) models are generally unsuitable 
for non-trivial assemblies because they require either 
extensive simplifications [56, 70, 125] or enormous 
numbers of equations and variables to account for the 
many possible intermediates [90]. Brownian dynamics 
(BD) models, even highly coarse-grained [10, 17, 51, 
167], are likewise challenged by the large numbers of 
reactants and long timescales typical of self-assembly 
systems, requiring themselves great simplifications of 
reaction processes that generally make them unsuitable 
for accurate quantitative modeling [58]. Methods based 
on Gillespie’s stochastic simulation algorithm (SSA) 
can provide an effective balance between DE and BD, 
but face their own challenges because the underlying 
reaction networks are too large to model explicitly [26, 
59, 64]. For similar reasons, self-assembly networks are 
extremely challenging for experimental characteriza-
tion [27, 29, 93, 100, 141, 222, 223] and model inference 
as well [104, 210]. For example, the high computational 
cost and large numbers of intermediate species make it 
computationally infeasible to learn models via prevail-
ing Bayesian parameter inference schemes [67], which 
require large numbers of simulation trajectories.

Over the recent decades, however, a specialized litera-
ture on self assembly modeling has grown for handling a 
number of challenging systems of independent impor-
tance. Cytoskeletal assembly (i.e. actin and microtubule 
assembly) has been the subject of extensive modeling 
work, leading to many seminal results in the basic bio-
physics of molecular assembly processes. Viral capsid 
assembly [70] has a long history as one of the primary 
model systems for macromolecular self assembly, both 
from an experimental and a computational perspective. 
Another key model system is amyloid aggregation, the 
basis for many major public health threats, including Alz-
heimers disease, Huntington’s disease, Parkinsons dis-
ease, prion disease, and type II diabetes. Figure 1 shows a 
few examples of important model systems for self-assem-
bly and models through which they have been studied. 
The practical importance of these and other systems has 
led them to attract their own modeling communities to 
find solutions to the special challenges of molecular self-
assembly to computational modeling. In these fields, one 
can find studies both anticipating the challenges begin-
ning to face broader systems biology efforts and often 
offering at least partial solutions to these challenges.

The remainder of this review will consider in more 
detail both the special difficulty of self-assembly mod-
eling and the literature addressing it. It will first discuss 
some of the important roles of self-assembly in cellular 
biochemistry as well as the role of systems modeling 
methods in understanding these systems. It will then dis-
cuss some of the successful approaches to self-assembly  

modeling that have emerged through this literature, as 
well as continuing challenges. It will conclude with con-
sideration of how quantitative self-assembly modeling 
may shape future efforts in modeling biological systems 
more generally.

2.  Why does self-assembly (SA) matter?

2.1.  The role of self-assembly in general cell biology
Self-assembly is everywhere in biology, beginning with 
the most fundamental processes of molecular biology, 
all of which depend on the self-assembly of specialized 
complexes, structures, or molecular machines. Examples 
of self-assembled molecular machines fundamental 
to molecular biology include DNA polymerases 
(replication), RNA polymerases (transcription), the 
spliceasome (splicing), the ribosome (translation), and 
the proteasome (protein degradation). Each of these 
processes is critical in different ways to the regulation 
of complex biological systems and thus has been the 
focus of specialized modeling efforts. For example, the 
transcription complex is one of the most well studied 
systems in molecular biology, with experimental work 
on the interaction of classic 1D and 3D diffusion of 
transcription factors [74] inspiring kinetic models 
of the recruitment process [95]. More specialized 
examples of self-assembly continue to be elucidated, 
with prominent recent examples including the RISC 
complex involved in miRNA [88, 116, 137, 168] and the 
Cas9-gRNA complex [33] implementing the CRISPR/
Cas system [138, 186].

Within eukaryotic biology specifically, a more spe-
cialized set of self-assembly systems have evolved critical 
roles. The cytoskeleton is an unusually large, dynamic, 
and complicated molecular assembly, making it a cru-
cial target of modeling efforts. The cytoskeleton itself is 
essential to intracellular transport [150, 152], cell move-
ment and shape control [7, 149], mechanotransduction 
[201], and cell division [79], among many other func-
tions. Furthermore, the dynamic process of assembly 
and disassembly is central to each of these functions. 
Actin and microtubule assembly and disassembly have 
been key model systems for self-assembly from the early 
days of molecular biology [20, 49, 61, 62, 91, 124, 134, 
170, 204] and have inspired numerous computational 
models (e.g. [52, 57, 130, 159, 161, 179]). Transport pro-
cesses in the eukaryotic cell frequently depend on other 
kinds of specialized self-assemblies, in addition to the 
cytoskeleton. For example, much eukaryotic transport 
involves the assembly of specialized machinery for con-
struction and scission of cargo-carrying vesicles, such 
as the clathrin and COP-I/COP-II coat systems [50, 
136], which have inspired their own modeling literature 
(e.g. [37, 87, 117]).

Beyond its role in general cell and molecular biol-
ogy, self-assembly is crucial to a number of disease-
specific processes. Amyloid diseases are perhaps the 
prime example of a disease specifically of self-assembly, 
where aberrant assembly is the mechanism of illness.  

Phys. Biol. 14 (2017) 035003
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Numerous such diseases are known, including many 
major public health threats. Perhaps best known are 
Alzheimer’s disease (characterized by aggregates of 
the Aβ peptide and the Tau protein [94, 122]), Hun-
tington’s disease (characterized by aggregates of the 
Huntingtin protein [113]), Parkinson’s disease [169], 
amytrophic lateral sclerosis [197], type II diabetes, and 
a variety of known prion diseases such as Creutzfeldt–
Jakob [28, 133]. Alzheimer’s and dementia, for example, 
are strongly associated with aging and affected roughly 
36 million people in 2010 [208, 209]. It is becoming 
increasingly clear that the ability to form the amyloid 
state is a widespread, generic property of proteins [102] 
making the process of amyloidogenesis an important 
topic of theoretical study. From a physical perspective, 
the main question is what forces stabilize the aggre-
gates into the oligomer (small soluble disordered clus-
ters) and fibrillar (long, many-chain highly structured 
-sheet-containing aggregates) states associated with 
neurotoxicity [165]. For a broader discussion of these 
forces, see [109, 110, 139]. From a computational per-
spective, the focus is both on identifying the structure of 
oligomeric intermediates and fibers but also elucidat-
ing the kinds of assembly pathways available. This is an 
especially challenging computational problem due to 
the intrinsic disorder in the system.

Viral illnesses form another broad class of self-
assembly-driven illness, in which assembly of large 
complexes (i.e. the viruses themselves) are the mech
anism of the disease process. Virus assembly is of 
obvious medical importance, given the millions who 
die each year from viral illnesses, e.g. 1.5 million from 
AIDS alone [38]. A fundamental understanding of this 

crucial aspect of the viral life cycle and infectivity may 
offer avenues for therapeutics or vaccines [223]. Addi-
tionally, there many factors making viruses appeal-
ing to the modeling community, including the deep 
experimental literature on their assembly and a high 
degree of symmetry in the final structure that allows 
for large complexes to be produced from small num-
bers of distinct subunit types. Viral assembly modeling 
has thus become a subfield in itself. Virus assembly has 
been a crucial platform for many basic advances in self-
assembly modeling, including the use of DE [220], BD 
[71, 128, 144, 167], and SSA [78, 97, 219] methods. It 
has likewise been a platform for developing a variety 
of specialized versions of these modeling methods, 
such as rule-based approaches to simulating extremely 
large reaction networks [89] and derivative-free optim
ization approaches to model inference [104, 210]. Viral 
capsids have been a focus of intense theoretical study 
into the basic biophysics of self-assembly [24, 42, 70, 
71, 187] as well as for identifying potential new avenues 
for assembly-mediated treatment [31, 43, 86, 101, 105, 
106, 143, 171, 187, 203, 215].

3.  Self-assembly modeling and simulation

3.1.  The challenge of quantitative modeling  
of self-assembly reaction networks
At the root of much of the difficulty of modeling 
self-assembly is the extraordinarily large number of 
intermediates and pathways potentially accessible to 
a self-assembly system. Large number of reactants 
present problems in different ways to most conventional 
modeling and model inference methods (see section 3.2 

Figure 1.  Example model systems for self-assembly simulation. (A) Viral capsid assembly. Top: hepatitis virus [77], bottom: coarse-
grained SSA simulation of HPV assembly [211]. (B) Amyloid aggregation. Top: high magnification micrograph of cerebral amyloid 
angiopathy with senile plaques in the cerebral cortex (amyloid beta, as seen in Alzheimer disease) [23], bottom: coarse-grained 
Monte Carlo simulation of amyloid aggregation with two state monomer model [11]. (C) Cytoskeletal assembly and disassembly. 
Top: highly oriented actin fibers in shear stress cultivated rat cells [2], bottom: BD simulation of actin cytoskeleton composed mainly 
of actin and actin crosslinking proteins [98]. (D) Genome organization. Top: chromatin fibers during mitosis, Xenopus egg [22], 
bottom: BD simulations of nucleosome structure and dynamics [151]. For more on nucleosome assembly, see [19].

Phys. Biol. 14 (2017) 035003
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below). They likewise present a challenge to experimental 
characterization of such systems, as there is no practical 
way to monitor huge numbers of distinct molecular 
species. While details vary by geometry, in general 
the number of possible intermediates (partially built 
structures) one might encounter on the way to a complete 
assembly will blow up exponentially in the assembly size. 
This problem has probably been most intensively studied 
in the virus assembly literature, as it is particularly 
pronounced for large, highly symmetric structures, of 
which viral capsids are a prime example. Even a coarse-
grained model of an icosahedral virus capsid, consisting 
of just twelve subunits, has 750 possible intermediate 
structures [121]. For real viral structures, which typically 
have several hundred proteins, the numbers of potential 
intermediates will be astronomical. Similar problems will 
arise to a lesser degree with large, asymmetric assemblies 
(e.g. the ribosome [103, 126]) as well as with larger but 
less symmetric assemblies such as the cytoskeleton. 
While the number of species possible for a linear filament 
is small, once one allows for branching [216], numbers 
of possible branched filaments or networks can blow up 
exponentially in the structure size as well. Note that this is 
not a unique challenge of self-assembly, as similar issues 
arise in other combinatorially explosive systems, such as 
signaling networks [16, 80].

A related concern for modeling, particularly with 
respect to self-assembly in cell biology, is the issue of 
small copy numbers [63, 194] resulting in an inherently 
discrete and stochastic reaction system. The issue occurs 
for many cellular systems involving reactants that occur 
in just a few copies per cell, but is especially an issue 
for self-assembly because the large number of interme-
diates guarantees that most are present in zero or one 
copies at any given time [135]. The issue is exacerbated 
by the fact that self-assembly reactions are frequently 
nucleation-limited, meaning that they are character-
ized by slow and relatively rare nucleation events fol-
lowed by comparatively rapid polymerization. Nucle-
ation-limited growth is well established for several of 
the major model systems in self-assembly, such as virus 
capsids [141, 217], amyloids [107], and actin and tubu-
lin fibers [14]. A large body of theory suggests the nucle-
ation-limited growth is crucial to their robust operation 
[44, 140–142, 156, 191]. In nucleation-limited systems, 
nearly every species is unpopulated at most times. Small 
copy numbers are problematic computationally in part 
because they mean that discretization errors inherent 
to efficient continuum models became substantial. In 
part, they are problematic because they mean that self-
assembly must be treated as a stochastic system, forcing 
the use of less efficient simulation methods than the 
continuum approximations usable when all species are 
well populated [41, 63, 194] (see section 3.4).

A second major challenge of self-assembly reactions 
is their long timescales (see figure 2), and in particular 
the large gap between timescales of the full assembly 
reaction and the individual polymerization steps of 
assembly. Full assembly reactions of large complexes 

in vitro may have timescales measured in minutes to 
days (although assembly in vivo may be substantially 
faster [36, 115, 176]) while individual reaction steps are 
typically many orders of magnitude faster [180, 222]. 
In part, this is a side effect of nucleation-limited growth 
mentioned above: nucleation reactions are necessar-
ily much slower than the subsequent elongation reac-
tions [167, 221]. Furthermore, the nucleation reactions 
themselves may in fact require extensive trial-and-error 
involving much faster formation and breakdown of 
transient partial intermediates [184, 217, 221]. Large 
timescales, and a large dynamic range of timescales, are 
challenges for essentially all standard modeling meth-
ods, whether that manifests in a need for large numbers 
of timesteps in a continuum method or large numbers 
of discrete events for a stochastic simulation.

A third class of challenge arises from the fact that 
self-assembly reactions are unusually sensitive to the 
many ways in which the physical biology of the cell dif-
fers from that of in vitro models. For example, physical 
confinement—by the cell membrane, subcellular com-
partments, or other large structures such as the cytoskel-
eton or genome—is commonly neglected in modeling 
reaction systems yet cannot be ignored when dealing 
with reactions that result in products comparable in size 
to the spaces in which they form. A related issue is that 
self-assembly processes are also well known to be unusu-
ally sensitive to macromolecular crowding [75, 119, 148], 
a key distinguishing feature of the cellular environment. 
Numerous theoretical and experimental studies have sug-
gested both the need for and the challenge to correcting 
simulation methods to account for the effects of crowding 
on assembly processes (e.g. [129, 166]). Examples include 
the effects on several aspects of DNA replication such as 
helicase activity and the sensitivity of DNA polymerase to 
salt [1], on protein-protein binding affinity and specific-
ity [99], on the kinetics and morphology of amyloid self-
assembly [115], on the stochasticity of gene expression 
machinery [76], and on viral capsid assembly [36, 176].

3.2.  Modeling methodologies
Despite the difficulties they present to modelers, a variety 
of modeling methods have proven valuable for self-
assembly. Table 1 describes a few of the primary methods 
that have emerged for self-assembly modeling. While 
most are drawn from older techniques for more general 
reaction chemistry modeling, in the self-assembly 
context they often present novel challenges or require 
specialized adaptations. This section covers three of the 
most successful methodologies that have been developed 
for self-assembly, some of the particular challenges they 
have faced in the self-assembly context, and how they 
have been adapted to meet those challenges.

3.2.1.  Mass action differential equation (DE) models
Much modeling of reaction systems classically has 
arisen, at least initially, from DE models based on the 
chemical Law of Mass Action. Such models represent 
any generic chemical reaction network

Phys. Biol. 14 (2017) 035003
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Accumulating these contributions across a full set 
of reactions and reactant species defines a system of 
differential equations modeling the time evolution of 
all reactants in the system. Such DE models were the 
basis of many of the earliest cell simulation systems, 
such as E-cell [193], ProMoT/Diva [65], Virtual Cell 
[164], GEPASI [118] and others. Later extensions of 
these models allowed for consideration of spatial het-
erogeneity via partial differential equation (PDE) reac-
tion-diffusion models:
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for reactant-specific diffusion coefficients di.
DE models provided a basis for some of the first 

approaches to modeling many self-assembly systems. 
Classic results on molecular assembly of polymers 
derived from such models include [131, 132] and 
they were integral to seminal models of microtubule 
polymerization [39]. They likewise were used for early 

attempts at more complex systems, such as the first 
dynamic models of viral self-assembly [221, 223], 
where they provided early insights into the parameter 
space of self-assembly [221]. They continue to prove 
valuable in that context for such problems as interpret-
ing complex experimental data [27, 70, 173].

The most substantial challenge to DE models on 
self-assembly systems is computational tractability, 
as such models need to keep explicit track of all spe-
cies that might be present in a given simulation. While 
that number grows only linearly in assembly size for 
linear polymers, it blows up exponentially in size for 
more complex structures such as viruses. In practice, 
the solution to that problem has typically been to sim-
plify: either manually via simplified versions of struc-
tures or conflation of subsets of structures [220, 221] 
or through automated methods for pruning low-usage 
pathways [48]. While there is good empirical evidence 
that such strategies can yield quantitatively accurate 
models [48, 223], degrees of accuracy can be sensitive to 
structure and pathways used [121]. DE models further 
provide no good solution for the problem of modeling 
discretization of small copy number reactions.

3.3.  Brownian dynamics (BD) models
The challenges self-assembly modeling presents to 
DEs led to an alternative approach based on Brownian 
dynamics (BD) particle models. In a BD approach, 
we explicitly model a finite set of assembly subunits 
in three dimensional space. These subunits diffuse 
through space under a model of Brownian motion, 
implemented by a variant of damped Langevin 
dynamics [51]. Models of binding dynamics can be 
implemented either by discrete reactions occuring 
upon particle collisions or via short-range binding 
forces, leading to gradual agglomeration of particles 

Figure 2.  Timescales for protein dynamics and aggregation. The figure illustrates some of the basic biological processes that go into 
self-assembly and their relevant timescales, illustrated by the specific example of amyloid aggregation. Figure based on material from 
[6, 21, 206, 207]

Phys. Biol. 14 (2017) 035003
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over the course of a simulation. BD models have the 
considerable advantage over DE models that one need 
not devote computational resources to any species 
not present at a specific instant in time. Run time thus 
depends on the number of particles modeled, not the 
number of species they might in principle form.

Such models have perhaps been most pronounced 
in their use with viral capsid systems, perhaps because 
their exceptionally large space of intermediates makes 
them especially challenging for DE models. Through 
viral capsid work, they have been the basis of numer-
ous important insights into the basic biophysics of 
self-assembly. BD models were introduced to capsid 
studies nearly two decades ago [167], have seen a series 
of important methodological advances since [71, 128, 
144] and continue to be the basis of new approaches 
and applications (e.g. [10, 17, 51]). They have also seen 
important roles in modeling various other challenging 
assembly systems, such as clathrin [87]. Insights arising 
from BD models include understanding the importance 
of nucleation limited growth to ensuring robust assem-
bly and preventing kinetic trapping [73], the sensitivity 
to numerous parameter variations [46], and the poten-
tial sources of misassembly [46, 71]. In more recent 
years, these models have been extended to issues difficult 
to model with other methods, such as understanding the 
role of the genome in RNA virus assembly [47].

The advantages of BD methods, however, come with 
some significant tradeoffs. First, the large size and long 
timescale of assembly reactions generally requires sub-
stantial structural simplifications. Second, such models 

typically can accommodate only modest numbers of 
particles, ranging up to a few thousand per simulation 
for state-of-the-art methods [17, 72, 155]. For relatively 
large structures, that may be too few to capture more 
than a small fraction of possible assembly trajectories. 
Third, they generally cannot produce quantitatively 
correct assembly rates, because of the large gap between 
diffusion rates and assembly rates. Effectively, systems 
need to be shifted into domains of extremely rapid 
assembly, through unrealistically high binding rates or 
concentrations, in order to yield computationally trac-
table simulations of the complete assembly process. 
Some more advanced versions of this approach can 
somewhat mitigate these issues, for example the use of 
Green’s function reaction dynamics (GFRD) to reduce 
the computational time needed to compute trajectories 
of particles between collision events [196].

3.4.  Stochastic simulation algorithm (SSA) 
methods
Just as BD models were introduced to self-assembly 
modeling to address the weaknesses of DE models, 
so have models based on the stochastic simulation 
algorithm (SSA) [63] (also known as ‘Gillespie 
models’ after their inventor) been adopted to address 
the weaknesses of BD models. In an SSA model, we 
represent a system at an instant in time by discrete 
counts of molecular species (monomers or partial 
assemblies). Simulation progress proceeds via reaction 
events, which for a self-assembly system will largely 
consist of single binding or dissociation reactions. 

Table 1.  Common modeling methodologies for self-assembly. The table lists principal techniques for self-assembly modeling, some 
systems biology software packages implementing them, and some notable applications in self-assembly modeling.

Reaction  

representation Description Software packages Applications

Law of mass action 

(deterministic)

Expresses any well-mixed  

chemical system as a collection of  

coupled non-linear first order  

differential equations which typically 

must be numerically integrated. PDEs 

must be used when space is explicitly 

included

BioNetGen [15], COPASI [82],  

VCell [146], DBSolve [66]

Virus assembly: [27, 70, 125, 

173], metabolomic  

networks [90]

SSA/Gillespie  

approaches

Provides a way to simulate kinetically 

correct trajectories consistent with the 

chemical master equation

Moleculizer [114], BioNetGen [15], 

VCell [146], DESSA [219]

Virus assembly: [97, 184]

Spatial stochastic Usually combine Gillespie or  

Stochastic Langevin with diffusion or 

subunit geometry

MCell [181], StochSim [108], VCell 

[146], Smoldyn [4], SRSim [69]

Geometric constraints with 

diffusion: [68],  

Amyloid-beta: [192]

Rule-based Primarly network-free rule-based  

methods which may incorporate  

stochasticity and spatial modeling

RuleMonkey [32], BioNetGen, 

ML-Space [13], VCell [163],  

SRSim [69]

Multivalent ligand-receptor 

interactions: [213], Prion 

aggregation [154], Virus 

assembly: [167, 219]

Brownian dynamics An explicitly spatial model  

where Brownian motion is computed  

with the Langevin equation

Smoldyn [4], MCell [181] Multiscale reaction- 

diffusion [58], virus 

assembly: [17, 46, 47, 71, 

128, 167], crowding/ 

amyloids: [205], clathrin 

cage formation: [87]
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Classically, one assumes a uniform, well-mixed system, 
in which reaction times can be approximated with 
exponential waiting time distributions [63]. The SSA 
approach can also accommodate spatial heterogeneity 
through modeling as an array of well-mixed, discretized 
spatial compartments, a variant known as spatial SSA, 
e.g. [5, 183].

SSA models offer considerable advantages but also 
involve important tradeoffs with the previously consid-
ered methods. They can be implemented to have run 
times independent of the number of potential species, 
unlike DE models, and can thus handle arbitrarily large 
reaction networks [64]. However, their run time does 
depend on the number of discrete particles present, lim-
iting them to finite numbers of protein copies, as do BD 
models. They are, however, typically much more efficient 
than comparable BD models since they do not need to 
model diffusion explicitly [64] and are practical over a 
much broader range of parameter domains [184]. In 
addition, they provide an explicit quantitative model 
yielding kinetically correct samples from a set of reac-
tions and associated rate constants. However, because 
they do not explicitly model space, they do not easily han-
dle steric constraints that are important to such processes 
as aberrant assembly [167], interaction of proteins with 
a flexible genome [47, 214], or any form of continuous 
flexibility in proteins or complexes [81, 153].

SSA methods have needed some special adaptations 
to deal with the challenges of self-assembly. Probably 
the most important advance is the use of rule-based 
modeling (e.g. [177]), a strategy independently devel-
oped for the self-assembly field under the name local 
rule modeling [167] and later introduced to SSA mod-
els under that name [219]. Rule-based models allow 
one to avoid explicitly constructing the reaction net-
work, an infeasible task for all but trivial self-assembly 
systems, and rather represent only the current state of 
the system and its immediate neighbors [55, 219]. This 
reduces run time from dependence on the size of the 
network to dependence only on the number of spe-
cies and reactions present at any instant in time. While 
steric constraints are a challenge for rule-base models, 
that challenge has been overcome for some systems, e.g. 
in modeling multivalent ligand-receptor interactions 
[123]. Further improvements to queuing methods for 
discrete event implementations of SSA [40, 89] made 
it possible to accelerate run time by eliminating quad-
ratic time/memory dependencies in the standard algo-
rithms. Additionally, a set of more specialized theory 
has been developed to deal with the problem of extreme 
divergence between timescales of monomeric reactions 
versus the complete assembly process. Generic meth-
ods for accelerating SSA can be helpful, e.g. [25, 145], 
as well as more specialized variants specifically for self-
assembly [120]. Other improvements include hybrid 
methods combining SSA with ideas from agent-based 
modeling [3].

While SSA methods have not yet seen as wide use 
as BD in the self-assembly field, they have proven to 

have important applications for which neither DE nor 
BD methods are suitable. Because of their ability to 
handle complex geometries and long time scales, SSA 
models have proven valuable for exploring parameter 
dependence of assembly systems by making it practical 
to sample large numbers of trajectories over long time 
scales [211] and to sample trajectories from particularly 
complex geometries or pathway sets [97]. They have 
also become a valuable platform for fitting models to 
experimental data, where their ability to fit an explicit 
timescale, to function over wide parameter ranges, and 
to model complex geometries are all crucial features 
[175, 176, 210, 211].

4.  Self-assembly in broader systems 
biology modeling

In recent years, efforts at systems biology modeling 
have begun increasingly to recognize the importance 
of self-assembly to comprehensive modeling of 
complex biochemical systems. For example, a number 
of general systems biology simulation tools have begun 
to incorporate handling of self-assembly in various 
ways. An early example was Moleculizer [114], which 
incorporated basic models of assembly reactions 
via a rule-based SSA model with special purpose 
corrections accounting for altered diffusion rates of 
growing species. Similar kinds of models have become 
important more generally in modeling tools, such as 
RuleBender [212], which have made it possible to 
integrate similar rule-based SSA models into other tools 
for systems biology modeling. The Virtual Cell [162] 
has recently added handling of self-assembly reactions, 
using a special-purpose extension based on a form of 
coarse-grained BD models of self-assembly [4, 35], as 
well as explicit handling of rule-based modeling [163]. 
The most recent version of the E-Cell [193] simulation 
environment (ECell4) has also been updated to include 
capabilities for modeling self-assembly such as a 
network-free rule model [55] and a spatial SSA method 
[183]. While none of these systems yet incorporates all 
of the specializations found in such methods in self-
assembly specific contexts, they represent important 
steps towards generic tools for modeling complex 
reaction networks that include but are not specific to 
self-assembly.

This need for handling the kind of combinatorial 
explosive reaction network that characterizes self-
assembly is also beginning to be reflected in systems 
biology language design. For example, the systems 
biology markup language (SBML) [84, 85], which has 
become the de facto standard for specifying models 
in systems biology, has been updated in more recent 
versions to accommodate the kind of network-free 
rule-based models needed for self-assembly work [83]. 
While it has long been possible to generate SBML from 
a rule specification through external tools, such as Bio-
NetGen [54], native support of the modeling language 
is necessary to achieve the benefits of network-free 
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modeling needed to make complicated self-assembly 
modeling tractable. Handling of steric constraints that 
become imporant in formation of more complicated 
assemblies remains a hard problem for the field, how-
ever, and is so far handled only in more specialized self-
assembly simulation languages [219].

Recent years have also seen claims of the first true 
whole-cell simulations [96, 157], an effort that nec-
essarily involves modeling numerous processes that 
depend on self-assembly. In practice, such efforts have 
not relied on a general-purpose simulation engine 
suitable to both self-assembly and more conventional 
reaction chemistry, favoring instead general purpose 
methods ill-suited to self-assembly coupled to special-
purpose handling of particular kinds of self-assembly. 
The landmark work of Karr et al [96] establishing a 
comprehensive simulation of M. genitalium biochem-
istry, relied on a series of special-purpose modules, 
several of which involved ad hoc methods for specific 
examples of self-assembly, such as macromolecular 
complexation and ribosome assembly. Nonetheless, 
even this kind of special-purpose handling remains 
the exception in similar efforts at comprehensive 
modeling of whole-cell reaction networks (e.g. [18, 
189]).

5.  Conclusions

Self-assembly is a greatly important but long neglected 
issue in the quantitative modeling of biological systems. 
While it is conventionally seen as a specialized form of 
chemistry, it is in fact the dominant form of reaction 
in living systems. It poses distinctive challenges for 
modeling methods, though, that prevailing methods in 
systems biology cannot handle. Self-assembly modeling 
has, however, been studied intensively in many more 
specialized contexts, leading to an appreciation of 
these challenges and a variety of ways they can be 
addressed. As more general systems biology efforts are 
beginning to embrace the necessity of accommodating 
self-assembly, this specialized literature can provide 
guidance and at least partial answers to some of the 
biggest obstacles these efforts will encounter. This 
review was intended to provide a brief overview of the 
particular challenges of self-assembly modeling, how 
they have been approached to date, and how these 
methods have been used in the past and are beginning 
to be incorporated into comprehensive models of 
systems biology. The hope behind this review is that 
better awareness of obstacles and solutions already 
identified by self-assembly modelers can assist the 
broader systems modeling community in anticipating 
and navigating the same issues.

An appreciation for the past literature allows us to 
predict some of the future paths comprehensive sys-
tems modeling efforts are likely to follow. For the most 
part, where general efforts at systems biology modeling 
have considered self-assembly, it has been as special 
cases with special-purpose methods for specific sys-

tems (e.g. [10, 17, 47, 92, 99, 155, 158, 174, 178, 210, 211, 
219]). Given the many examples of self-assembly in cell 
biology, it is safe to say this is not a sustainable solution; 
rather general systems biology efforts will need to start 
to think of self-assembly as the normal case that must be 
accommodated and integrated into simulation design 
via both model specifications and simulation algo-
rithms. Modeling methods that will work for both self-
assembly and for other kinds of chemistry exist [3, 13, 
15, 32, 114, 146, 185, 199], but will need to become the 
standard for modeling tools and languages. More fore-
sighted efforts in a variety of systems modeling contexts 
can help point the way (e.g. [4, 35, 96, 114, 164, 193]), 
although most remain behind the state-of-the-art in 
modeling of self-assembly specifically.

At the same time, there are many challenges for 
which good solutions do not yet exist. For example 
model inference [30] remains an extremely difficult 
problem for self-assembly systems [104, 210, 211, 223], 
where the Bayesian methods usually favored by the field 
[67] are unusable in practice, and it is likely advances 
in both biotechnology and inference algorithms will 
be needed to address it. The field is beginning to tackle 
this challenge, e.g. with BioNetFit [190], which uses 
a genetic algorithm to provide curve fitting capabili-
ties compatible with ODE (BioNetGen) and Network 
Free (NFSim) model specifications and has proven 
successful in fitting to steady-state and time-series oli-
gomerization data. There are also, as yet, no univer-
sally good methods for modeling hard self-assembly 
systems. Each of the major approaches covered here—
SSA [64], BD [167], and DE [220]—has tradeoffs that 
make them unsuitable for some questions. It remains 
to be seen whether more general solutions might arise 
from advances in one or more of these methods, clever 
hybrid approaches, or some wholly new ideas. It is also 
worth noting that self-assembly systems are challeng-
ing to characterize experimentally, for similar reasons 
to their challenge to modelers. The solutions to that 
issue, as well, are likely to lie in pooled efforts by exper
imentalists and computational researchers to advance 
experimental biotechnology and model-fitting algo-
rithms in complementary ways. Indeed, self-assembly 
may be a particularly valuable test case for addressing 
the hard problems in building detailed and predictive 
quantitative models of complex biological systems, 
where the field can begin to think of modelers and 
experimentalists not as two communities but as two 
inseparable pieces of the future practice of biological 
discovery.
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