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Genome-scale metabolic networks which have been automatically derived through sequence comparison
techniques are necessarily incomplete. We propose a strategy that incorporates genomic sequence data and
metabolite profiles into modeling approaches to arrive at improved gene annotations and more complete
genome-scale metabolic networks. The core of our strategy is an algorithm that computes minimal sets of
reactions by which a draft network has to be extended in order to be consistent with experimental observations.
A particular strength of our approach is that alternative possibilities are suggested and thus experimentally
testable hypotheses are produced. We carefully evaluate our strategy on the well-studied metabolic network of
Escherichia coli, demonstrating how the predictions can be improved by incorporating sequence data.
Subsequently, we apply our method to the recently sequenced green alga Chlamydomonas reinhardtii. We
suggest specific genes in the genome of Chlamydomonas which are the strongest candidates for coding the
responsible enzymes.

Introduction

The rapid development of high-throughput techniques has enabled biological researchers to acquire immense
amount of data and has triggered the advent of a multitude of ‘omics’ disciplines. The improvement of
sequencing technologies resulted in the availability of the full genomic sequences for several hundred
organisms.1 Monitoring the activity of the genes has almost become routine through the advances in microarray
technologies.2,3 Many of the proteins, the gene products, may today be quantified by measuring peptides with
modern mass spectrometry approaches and matching the identified peptides to databases.4,5 Finally, various
chromatographical methods combined with mass spectrometry allow to simultaneously measure the level of
hundreds of metabolites.6 A major focus of systems biology research is now to integrate this flood of data to
arrive at a comprehensive, systems-wide view of living organisms.7

A particular challenge is imposed by the fact that every measured dataset is necessarily incomplete. Even
though obtaining a genome sequence is now relatively easy, by far not all gene models are defined and
annotated and despite the rapid technological improvement in mass spectrometry, still only a small fraction of
metabolites can unambiguously be identified. This demonstrates the necessity to develop theories and methods
which can cope with incomplete data and nevertheless provide a systemic description of cellular processes. The
traditional bottom-up view on metabolism, in which reactions form a pathway and interacting pathways define
the metabolic system is clearly insufficient if one has to deal with unavoidable gaps in the knowledge of single
reactions.

The difficulty imposed by incomplete data becomes evident when considering recent approaches to analyze
genome-scale metabolic networks. For example, Ibarra and co-workers8 have successfully applied the
mathematical framework of flux balance analysis (FBA, see for example refs. 9 and 10) to predict flux
distributions resembling optimal growth rates in Escherichia coli for different nutrient conditions. This analysis
required a complete, or at least consistent, genome-scale metabolic network model. The development of such
models involves a time consuming manual verification of every single reaction,11 which is in stark contrast to
the modern high-throughput technologies which yield a tremendous amount of data in a very short time.

In this work, we present a systems biology strategy aiming at integrating available data from the various
modern ‘omics’ technologies. Our top-down approach is specifically designed to accept the incomplete nature of
experimental data. By embedding genomic and metabolomic data into bioinformatics and structural modeling
approaches, our strategy is suited to extend incomplete metabolic network models to make them consistent with
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experimental observations. The simple rationale behind our approach is that if the precise chemical composition
of the growth medium is known and metabolic products have been observed or are inferred from biological
reasoning, the underlying metabolic network must provide routes to produce these metabolites from the
nutrients. Theoretically, it has been shown that such a metabolic reconstruction approach is an NP-hard
problem.12 Therefore, we designed an algorithm that calculates a large variety of theoretically possible minimal
network extensions which all make the incomplete draft network compliant with the observed functions.
Bioinformatics prediction methods allow to rank different extensions with respect to their biological plausibility.
Thus, our proposed methodology is qualified to deduce experimentally testable hypotheses from unfiltered and
incomplete information of heterogeneous origin.

Several approaches have been reported that aim at completing draft metabolic networks which have been
derived from genome sequences by homology matching of DNA or protein sequences with known genes of
metabolic enzymes. Such approaches, often referred to as genome context analysis, usually involve the
identification of the missing parts, the identification and ranking of candidate genes and their experimental
verification.13 In most studies (see for example refs. 14–17) the local context of certain reactions within
predefined pathways is investigated to identify gaps in metabolic maps. These bottom-up approaches bear the
danger of missing reaction routes that deviate from classical pathways. A systemic top-down strategy was
proposed by ref. 18, aiming at extending draft networks to fulfill the condition that a defined set of metabolites,
the biomass, can be produced at steady state from selected nutrients. The approach employs FBA, which is
mathematically described as an optimization problem, resulting in a single solution or a small number thereof.

Our approach overcomes this restriction by providing a large variety of solutions without the need to
reiterate the calculations with additional constraints. Genomic sequence information is exploited to obtain hints
which solutions are more plausible to be correct. Our strategy is widely applicable and not restricted to
particular organisms. Moreover, our approach is error tolerant and yields plausible predictions for networks that
are directly retrieved from databases without the need of prior manual curation. As a proof of principle, we first
apply our methodology to the well-characterized metabolic network of E. coli. Secondly, we use our approach
to extend the draft metabolic network of the recently sequenced green alga Chlamydomonas reinhardtii19 to
achieve an improved genome annotation and a more complete metabolic network. Experimentalists can benefit
from our theory by obtaining testable hypotheses on gene functions and metabolic pathways. The generation of
genome-scale network models which are consistent with available experimental observations are in turn of great
value to theoreticians concerned with the analysis of genome-scale metabolism.

Results

General strategy

Our strategy is based on the simple biological observation that all metabolites which have been experimentally
detected within a cell culture or an organism must have been produced by the organism’s metabolism from the
available nutrients.

The general approach to infer completions of draft metabolic networks is illustrated in Fig. 1. Genomic
information is used to initially draft a metabolic network model. Experimental data, in particular measured
metabolites, are exploited to define functions that the network necessarily must possess. Whether a network
provides the synthesis routes necessary to fulfill these functions is tested employing the method of network
expansion.20–22 The draft network is then embedded in a much larger reference network from biochemical
databases such as KEGG23 or MetaCyc.24

An integrative approach towards completing genome-scale metabolic networks (DO... http://www.rsc.org/delivery/_ArticleLinking/ArticleLinking.asp?JournalCode=M...

2 of 19 02/11/2009 13:42



Fig. 1 Integrative approach using omics techniques and
mathematical modeling to improve the metabolic network.
The initial draft network is derived from genomic sequence
data. In general, the architecture of a draft network is not
sufficient to explain the presence of all metabolites observed
in metabolomics measurements. The draft network is
embedded in a reference network consisting of reactions
collected in databases such as MetaCyc or KEGG. A greedy
algorithm calculates minimal sets of reactions, so called
extensions, that have to be added to the draft network to make
it compliant with all experimental data. A network is in
agreement with observations if it is able to carry fluxes
producing the measured metabolites from the applied nutrient
medium. The calculation of a large number of extensions is
achieved by initializing the algorithm with many differently
ordered lists of reactions (see text). In this process, genomic
sequence information is incorporated to ensure that as a
tendency those reactions are preferentially included in an
extension for which there exists high significance that a gene
coding for a catalyzing enzyme is present. The solutions are
compared and used to derive hypotheses about the existence
of biochemical reactions and genes encoding the respective
enzymes. These hypotheses can be tested experimentally or
with bioinformatics methods. With this strategy, modeling,
bioinformatics and experiment are combined in an iterative
process to improve gene annotations and arrive at more
complete genome-scale metabolic networks.

The core of our strategy is an algorithm that determines minimal sets of reactions, so called extensions,
which have to be added to the network draft in order to make it compliant with all experimental observations. In
a first step of our greedy algorithm, all reactions from the reference network are added to the draft network.
From these additional reactions, every single one is temporarily removed and it is verified whether the network
is still fully functional. If this is the case, the considered reaction was not strictly necessary and is permanently
removed. Otherwise, the reaction is kept in the extension, because its presence is apparently required to obtain
agreement with experimental data.

Clearly, the obtained extensions strongly depend on the order in which the reactions are temporarily
removed. We explicitly exploit this fact and systematically determine large numbers of extensions. This is
achieved by creating many randomized lists of reactions. With available gene and protein sequences, we build
reaction-specific but species independent profile hidden Markov models25 (see Fig. 2 and Methods). These
models allow to assess which enzymes are most likely to be encoded in the genome. We incorporate this
information into the randomization procedure in such a way that preferentially those reactions are included in an
extension for which a high probability is observed that a catalyzing enzyme is encoded in the genome. This
leads to a considerably improved prediction of missing reactions.

Fig. 2 Reaction-specific HMMs and E-values. For a
given reaction, enzyme sequences are collected from
databases and are used to build reaction-specific and
species-independent profile hidden Markov models
(HMMs). From these HMMs E-values are calculated
which reflect the probability that an enzyme catalyzing
a reaction is encoded in the genome of the studied
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organism. In this paper HMMs were applied to the
genomes of E. coli and Chlamydomonas reinhardtii.

We systematically evaluate our computational predictions by applying our strategy to the well-investigated
model organism E. coli. We then apply our methodology to the recently sequenced green alga Chlamydomonas
reinhardtii to put forth hypotheses regarding the extension of its draft metabolic network. We contribute to
improved gene annotations by proposing candidate genes coding for enzymes catalyzing missing reactions.

Proof of principle

To demonstrate that our method yields biologically relevant results, we verify that our predictions meet the
expectations for a well-studied example. As one of the most thoroughly investigated organisms, we selected E.
coli and retrieved the metabolic reactions from the EcoCyc26 database. While it can be expected that this
collection will further expand in the future, we assume that the metabolic network of E. coli in its present state
is, among all available organism-specific networks, closest to being complete. From the information contained
in EcoCyc, we have assembled a reaction network containing more than 1500 reactions, including enzymatic
and spontaneous reactions, connecting about 1500 chemical compounds (see Methods). We have decided to
perform our case study on a network which has been directly retrieved from a metabolic database instead of a
published curated model, as for example presented in refs. 27 and 28, for two reasons. First, because networks
retrieved directly from databases tend to contain some stoichiometric inaccuracies, in particular with respect to
protons and water moieties on both sides of the reactions, we can show that our method is more tolerant against
these types of errors than those that use FBA or related concepts. Secondly, the technical task to embed a
network into a larger network of a different format is tedious and it is hard to rule out the possibility that the
predicted extensions contain artifacts resulting from different naming conventions of metabolites or reactions.

E. coli, as a generalist, may grow on a huge variety of growth media. For example, it displays rapid growth
when it is grown on glucose as the only carbon source. This implies that E. coli’s metabolism is capable of
producing all necessary precursors for higher level processes, such as macromolecule assembly, by consuming
exclusively glucose and other, non-carbon containing substrates. This includes in particular the formation of all
twenty amino acids, the nucleotide phosphates ATP, CTP, GTP and UTP, as well as the deoxy forms dATP,
dCTP, dGTP and dTTP required for protein, RNA, and DNA synthesis. For our case study, we focus on the
minimal metabolic function that a metabolic network describing the biochemistry of E. coli must be able to
synthesize all these 28 target metabolites from glucose and inorganic material. As expected, the retrieved
metabolic network can perform this essential function. The selected 28 target metabolites make up by far the
largest fraction of metabolites commonly considered as substrates necessary for biomass production in other
genome-scale metabolic models of E. coli.27,28 Thus, the chosen condition corresponds approximately to the
condition that genome-scale models would show growth.

In the following, we construct a large ensemble of incomplete networks through the removal of reactions. We
first investigate how the functionality is impaired upon this deletion. Secondly, we repair the networks using a
set of more than 4500 reactions extracted from MetaCyc and compare our predicted extensions to the reactions
that were originally removed, allowing to define and assess the quality of the predicted network extensions.

We mimic draft networks of different levels of incompleteness by randomly removing 20, 50, 100 and 200
reactions from the full E. coli network, respectively. For each case, 100 draft networks have been constructed.
Each of the resulting 400 reduced networks imitates a draft network for an organism whose genome has only
been partially annotated and that therefore shows an incomplete architecture. In contrast to the full network,
most of the constructed draft networks do not display the full capability to produce all 28 target metabolites.
Clearly, how many and which particular precursors cannot be produced depends on the specific reactions that
have been removed. In Fig. 3A, a histogram over the number of targets which cannot be produced by the
reduced networks is shown. The bars are separated to indicate how strong the original network has been reduced
(20, 50, 100 and 200 reactions removed). As expected, the tendency can be observed that a larger number of
removed reactions leads to more targets which can no longer be produced. In Fig. 3B, the effect of reaction
removal on the particular target production routes is depicted. The production of simpler, non-aromatic, amino
acids seems more robust than that of more complex amino acids and nucleotides. This indicates that for the
latter metabolites the synthesis routes show a lower degree of redundancy and therefore the removal of reactions
is more likely to result in the loss of their producibility.

An integrative approach towards completing genome-scale metabolic networks (DO... http://www.rsc.org/delivery/_ArticleLinking/ArticleLinking.asp?JournalCode=M...

4 of 19 02/11/2009 13:42



Fig. 3 Effect of network reductions on the producibility
of target metabolites. (A) Shown is a histogram of the
numbers of target metabolites which can no longer be
produced after removal of reactions. (B) Shown are the
numbers of draft networks which are unable to
synthesize particular target metabolites. In both
figures, the bars are separated to indicate networks of
different degrees of incompleteness (20, 50, 100 and
200 reactions have been removed to generate 4 × 100
= 400 reduced networks).

While the investigation of the effect of random network perturbations is extremely interesting and useful to
elucidate the robustness of network architectures with respect to essential functions, the main focus of the
present paper lies elsewhere, namely in the identification of missing links in incomplete networks. These gaps
are filled by minimal collections of reactions, so-called extensions, recovering the functionality of the original
network. Since we identify minimal sets of reactions, it cannot be expected that all removed reactions are
recovered, because many reactions are not involved in the production of the target metabolites. Hence, it is
impossible to predict such reactions by a strategy based on recovering the particular network function given by
the producibility of the targets. We will, however, demonstrate that it is possible to identify those missing
reactions which are strictly required to perform essential metabolic functions.

In the artificially produced draft networks we know exactly which reactions were removed. Therefore, they
provide an ideal background to assess the predicted extensions. A good prediction should propose a high
number of previously removed reactions and a low number of other reactions which are not found in the
original metabolic network of E. coli. To quantify the correctness of an extension, we introduce the quality
measure q(E) of an extension E

 (1)

where T(E) denotes the number of correctly predicted reactions within an extension E and N(E) denotes the
extension size, i.e. the total number of reactions within extension E. In this way, a value of q = 1 describes a
perfect prediction containing exclusively reactions which were previously removed and a value of q = 0
characterizes the worst possible prediction consisting only of reactions not found in the original E. coli network.

Since the calculated extensions strongly depend on the order in which the reactions are traversed, we have
generated for each of the 400 draft networks 100 completely randomized reaction lists. Every resulting
extension ensures that the capability to produce all 28 target metabolites is regained. A histogram of the
corresponding prediction quality measures (1) is shown in Fig. 4A. Interestingly, those extensions containing
exclusively reactions that have previously been removed (q = 1) and those containing none of these reactions (q
= 0) show the highest relative abundance. However, this does not hold true for strongly reduced networks. For
those cases in which 200 reactions have been removed, almost no extension falls into one of these categories.
One reason for this is that less incomplete network can in general be fixed by simpler extensions and these are
more likely to assume extreme values.
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Fig. 4 Histogram of the quality of predicted extensions
for the artificially reduced metabolic network of E. coli.
(A) Extensions have been calculated without including
sequence information. (B) Extensions were determined
such that reactions with a high probability that coding
enzymes are present in the genome of E. coli are
preferentially included. The shuffling parameter was set
to β = 0.04. In both figures the quality is measured by
the fraction of correctly predicted reactions in a
calculated extension. The bars are stacked indicating
the contributions of pathway predictions obtained for
different numbers of removed reactions.

Randomizing the sequential order of the reaction lists means that all reactions are treated equally. If, for
example, two reactions could alternatively be included in a functional extension, both reactions will be found
with equal probability. This procedure is adequate if no further information about the putative reactions is
available. However, the genome sequence may provide valuable hints on which enzymes may be encoded. To
consider such information, we collect for each reaction in MetaCyc all available protein sequences to build
reaction-specific profile hidden Markov models (HMMs)25 from the resulting multiple sequence alignment.
These multiple-species models allow to search protein sequences for functionally related sequences (see Fig. 2
and Methods). For the best match of every reaction-specific HMM to a protein encoded in the genome of E.
coli, an E-value was determined, where a low value close to zero indicates a high chance that a catalyzing
enzyme is present.

To ensure that reactions with a low E-value are preferentially included in the extensions, we create reaction
lists which are not completely randomized but retain the tendency that reactions with lower E-values are
positioned towards the end of the lists. For this, a scalable parameter β is introduced which is related to the
probability that a reaction with a higher E-value may be placed behind a reaction with a lower E-value (see
Methods). An infinite value β results in a strictly ordered list whereas β = 0 characterizes the completely
randomized case described above. We have systematically investigated the effect of the ordering parameter β
(see Supporting Text S1, ESI  ) and chosen an intermediate value of β = 0.04 for the calculations presented
here. The corresponding histogram of quality measures (1) is depicted in Fig. 4B. Comparison of Fig. 4A and B
reveals that considering sequence information indeed improves the prediction quality in general and the fraction
of perfect predictions in particular (10008 or 28% against 6463 or 18% perfect predictions).

To ensure that these findings hold true not only for the special case of the well studied organism E. coli, we
have repeated the presented analysis for B. subtilis, for which the tier 3 network has been retrieved from the
BioCyc database collection. For B. subtilis, a simple chemically defined growth medium exists,29 from which all
necessary precursors must be produced. In fact, the retrieved network is already capable to provide these
essential precursors. In analogy to our studies for E. coli, we have again generated 400 reduced networks and
for each calculated 100 extensions. The figure corresponding to Fig. 4 is given in the Supporting Text S2, ESI.
It is striking that inclusion of sequence information yields a much stronger improvement of the prediction
quality than for E. coli. The explanation for this lies in the fact that the retrieved network for B. subtilis has been
obtained exclusively by sequence homologies without further curation. As a consequence, our algorithm will
identify the original reactions with a higher probability if sequence information in the form of E-values is
included.

We expect that including genomic information will also increase the fraction of correct predictions when
applying our algorithm to real draft networks for which a quality measure cannot be determined. Since the
applied algorithm detects a large variety of theoretically possible extensions to regain functionality, in the real
case a level of uncertainty will necessarily remain. Bioinformatics methods are useful to obtain hints on the
likelihood of alternative predictions, but ultimately the candidate extensions have to be verified experimentally.

Extending the network of Chlamydomonas reinhardtii
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We have applied our proposed method to the metabolic network of the green alga Chlamydomonas reinhardtii.
The sequenced genome of this organism has recently been published19 and based on this sequence, a draft
metabolic network has been assembled and compiled in the ChlamyCyc database30 (see Methods). At the
current state, the network contains about 1500 metabolites and 1200 reactions. Chlamydomonas cultures grown
photoautotrophically have been subjected to extensive metabolomics measurements and 159 metabolites could
uniquely be identified using gas chromatography–time of flight–mass spectrometry (GC–TOF–MS).31,32 Of
these, 138 metabolites could unambiguously be mapped to compounds present in the MetaCyc database. The
experimental evidence for the presence of these metabolites entails that the metabolic network of
Chlamydomonas must be capable of producing these from the supplied nutrient medium. We have tested
whether the draft network is already able to carry fluxes necessary for their production and found that 87 from
the 138 metabolites may in fact be produced. Among the producible compounds are also the 28 essential
precursor metabolites considered in the previous section for E. coli. Interestingly, 20 of the remaining 51
metabolites cannot even be produced by the reference network comprising all reactions found in the MetaCyc
database (a complete list is given in the Supporting Text S6, ESI  ). This finding indicates that our knowledge
on metabolism, even when combining information from hundreds of organisms, is still far from complete.

To identify possible extensions for the draft network of Chlamydomonas we have applied our algorithm by
embedding the draft network into the complete MetaCyc network with the task to compute sets of reactions that,
when added to the draft network, enable it to carry fluxes for the production of the remaining 31 metabolites.
For this, we have first calculated E-values for each reaction present in MetaCyc but not in the draft network,
based on sequence similarities to the coding region in the Chlamydomonas genome using the reaction-specific
hidden Markov models described in the Methods section. Based on the E-values, we have generated 10 000
randomized lists of reactions such that as a tendency those reactions with a high probability that coding
enzymes are found in the genome are placed near the end, resulting in their preferential incorporation into
network extensions (see Methods; similarly to E. coli we set β = 0.04). Based on these lists, 10 000 possible
extensions have been calculated.

The distribution of the extension sizes for the calculated network extensions are depicted in Fig. 5A. The
smallest set of reactions providing the Chlamydomonas network with maximal functionality (capability to
produce the 31 target metabolites) contains 52 reactions, the largest set 95 reactions. These values give an
impression at how incomplete the existing draft network, built exclusively on genomic sequence information,
still is. In total, the 10 000 extensions contained 598 distinct reactions. In Fig. 5B the relative occurrence of all
these reactions within all 10 000 calculated extensions is displayed where the reactions have been ordered with
decreasing frequency. Interestingly, 15 reactions are found in every extension, while 466 reactions occur in less
than 10% of all extensions.

Fig. 5 Extension sizes and frequency of reactions
within extensions for the draft network of
Chlamydomonas reinhardtii. (A) Shown is a
distribution of the numbers of reactions within the
calculated extensions. (B) The relative occurrence of
single reactions within the 10 000 calculated
extensions are displayed. The reactions have been
ordered with decreasing frequency.

Various reasons may be responsible for the fact that metabolites have been observed but the draft network
does not include reactions required for their production. Many reactions have been characterized biochemically
several decades ago, but no protein sequences for catalyzing enzymes are available. In such a case, annotation
of the coding genes is impossible. Gene annotations may also have failed due to low sequence similarities.
Further, it cannot be excluded that the observed metabolites have been produced chemically post extraction and
are not truly part of the metabolism. Finally, the possibility has to be considered that reactions producing a
particular metabolite are simply not known.
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In the following paragraph we will discuss in detail examples of incomplete annotation.

Ergosterol. The Chlamydomonas genome encodes for several proteins involved in sterol biosynthesis.
However, the annotated enzymes do not suffice to allow for full biosynthetic pathways. For example, ciliary
membranes of Chlamydomonas containing multiple sensory proteins have been identified as enriched with
ergosterol,33 a sterol which may not be produced by the draft network. We obtained several predictions within
the ergosterol biosynthesis pathway, depicted in Fig. 6, which we will discuss in the order of the reactions. A
key step in sterol biosynthesis is squalene monooxygenase (EC 1.14.99.7). This enzyme has not yet been
annotated in Chlamydomonas, but the corresponding reaction has been found in every calculated extension.
This step is of major importance also for the production of other sterols. By sequence comparison we could
identify a good but not yet annotated candidate gene model with a gene product homolog to several proteins in a
variety of species. Fig. 7 displays the phylogeny of the protein squalene monooxygenase. Clearly, the candidate
protein belongs to the group of monooxygenases. It cannot, however, be unambiguously assigned to groups
formed by plant, animal or fungal proteins. It rather seems to represent a distinct clade together with other algal
species, depicted in cyan in Fig. 7. These findings indicate that this essential protein has diverged early during
evolution from the orthologs found in other eukaryotes. Moreover, we got additional evidence from proteomics
studies that this gene model encodes a protein present in Chlamydomonas. We found at least one peptide
matching the proposed protein sequence with high confidence (unpublished data).

Fig. 6 The ergosterol biosynthesis pathway. Shown is
the pathway as annotated in yeast (Main pathway). The
alternative routes correspond to reactions annotated in
the human cholesterol pathways. These reactions
represent analog chemical conversions but may differ
in the degree of detailedness and used cofactors. Both
possibilities have been detected by our algorithm.
Thick black arrows indicate reactions present in the
draft network. The remaining reactions are color coded
to indicate the species where the closest homologs
were found (green—plants, yellow—fungi,
red—animals). The blue arrow for squalene
monooxygenase indicates that this enzyme forms a
distinct subgroup in algae. Reactions for which no
clear sequence similarities could be identified are
marked by thin black arrows. A detailed graphical
representation of the pathway is given in the
Supporting Text S7, ESI.
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Fig. 7 Phylogenetic relationship of the putative
squalene monooxygenase found in Chlamydomonas to
orthologs from other organisms.

For some of the intermediate steps of ergosterol biosynthesis, our algorithm seemingly found alternative
routes. In four cases, two alternative reaction sequences were identified from which at least one is required to
explain the existence of ergosterol. A detailed investigation of the alternative reaction sequences reveals that
they represent similar or even identical reaction steps. While they appear in different pathways, as they are
defined in MetaCyc, they do in fact simply represent a different degree of detail, thus explaining the different
number of steps. The fact that these alternative descriptions were found demonstrates the principle ability of our
approach to identify alternative solutions to explain the presence of observed metabolites. Despite the close
resemblance of the alternatives, it is still interesting to observe that in all four cases one alternative corresponds
to a part of the ergosterol biosynthesis pathway annotated in yeast, while the other alternative corresponds to a
part of the cholesterol pathway as annotated in human (for a detailed representation of the alternative routes, see
Supporting Text S7, ESI  ). Apart from the different detailedness regarding the number of reaction steps, the
human and yeast pathways differ in the cofactors that are used. While these differences are not critical for the
extension of the draft network to consistency, it is nevertheless interesting to investigate whether in
Chlamydomonas this pathway is closer related to the kingdom of fungi, animals, or plants. We performed
phylogenetic analyses for various of the involved proteins (see Supporting Text S8, ESI  ) and found that there
is no clear tendency towards a similarity with one particular kingdom. Rather, some proteins seem to bear a high
similarity to plant proteins while others are more similar to fungal or human proteins.

The final steps in the biosynthesis of ergosterol involve five consecutive reactions in which zymosterol is
converted into ergosterol. Two of the five catalyzing enzymes have already been assigned to coding genes in the
genome of Chlamydomonas. The remaining three are found in every calculated extension. For the C-8 sterol
isomerase (isomerizing fecosterol into episterol) we identified a gene with homologs in Arabidopsis thaliana
and mouse, for the C-22 sterol desaturase (desaturating an ergostatetraenol at the 22nd position to an
ergostatetraenol), we found a gene with a clear ortholog in yeast. The last step from ergostatetraenol to
ergosterol, catalyzed by the C-24 sterol reductase (EC 1.3.1.71), is biochemically very similar to the C-14 sterol
reductase (EC 1.3.1.70) for which we found a clear ortholog against several organisms. Indeed, this protein also
displays a high similarity to the C-24 sterol reductase (ERG4) gene in yeast. We therefore speculate that the
identified protein is able to catalyze both reactions.

In Table 1 we list the putative enzymes of the Ergosterol synthesis pathway. In the first column reactions are
specified by their EC number. In cases where no EC number is assigned to a reaction, an alternative name is
given. In the second column, we state evidence obtained by sequence homology.
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Table 1 Evidence for predicted enzymes of the Ergosterol pathway in Chlamydomonas reinhardtii

Reaction/EC
number Evidence

1.14.99.7 Blast hit (136 985) against human (ERG1)
1.1.1.270 Blast hit (191 061) against human (DHB7)
1.3.1.70 Orthologs (196 516, 126 431) to yeast (ERG24)
1.3.1.71 Blast hit (196 516) against yeast (ERG4)
1.14.13.70 Ortholog (196 411) to Arabidopsis (AT1G11680)
1.14.13.72 Orthologs (142 288,186 886) to human (NP_006736.1)
C-8 sterol isomerase Blast hit (160 258) against Arabidopsis (AT1G20050) but more likely C-8,7 sterol

isomerase (5.3.3.5)
5.3.3.5 Ortholog (160 258) to Arabidopsis (AT1G20050)
C-22 sterol
desaturase

Ortholog (196 874) to yeast (ERG5)

Rhamnose. The deoxyhexose L-rhamnose was uniquely identified but the draft metabolic network does not
provide a synthesis route. Interestingly, though, the chemically more complicated compound UDP-rhamnose
may be produced by the draft network. The three reactions

 L-rhamnose  L-rhamnulose (2)

 L-rhamnulose + ATP → L-rhamnulose-1-phosphate +
ADP (3)

 L-rhamnulose-1-phosphate  L-lactaldehyde +
dihydroxyacetonephosphate, (4)

catalyzed by the enzymes L-rhamnose isomerase (EC 5.3.1.14), L-rhamnulose kinase (EC 2.7.1.5) and
rhamnulose-1-phosphate aldolase (EC 4.1.2.19) respectively, all appear in every predicted extension. This
reaction chain constitutes the rhamnose degradation pathway characterized in E. coli. However, the algorithm
predicts that all these reactions are operating in reverse direction. This seems unrealistic since rhamnulose
kinase is likely to be irreversible under physiological conditions considering the change in free energy resulting
from hydrolysis of the γ-phosphate of ATP.

To understand why our algorithm yields this somewhat counterintuitive result, the usual synthesis pathway
of rhamnose has to be considered. Rhamnose is, for example, an important component of plant cell wall
pectins.34 The incorporation into pectins occurs through the activated intermediate UDP-L-rhamnose, a
compound which may already be produced by the draft network. In Chlamydomonas, the rhamnosylated
macromolecules have not yet been identified and the presence of pectin-like structures was not observed.
However, fucose, another deoxyhexose, was observed in Chlamydomonas as a constituent of the extracellular
matrix.35 A later degradation of pectin releases free rhamnose, providing a simple explanation why L-rhamnose
was experimentally observed. However, this plausible chain of events is not represented in metabolic databases.
Such databases focus on the description of biochemical reactions involving relatively small molecules.
Macromolecules, if described at all, are represented as generalized compound classes, such as ‘a pectin’ or ‘a
protein’. Since our algorithm depends on detailed reaction stoichiometries involving well defined reactants, it is
not able to detect pathways involving such compound classes, explaining why instead the degradation pathway
in reverse direction was predicted.

The prediction of degradation pathways is nevertheless informative. The existence of free rhamnose strongly
suggests that it can be reincorporated into other metabolic processes. Any other assumption is implausible
considering the energy required for sugar production. Moreover, a continuous accumulation of rhamnose has
not been observed. We did not identify any clear similarity to proteins involved in the predicted degradation
pathway (see Table 2), indicating that homology to the bacterial pathway is unlikely. However, the authors are
not aware of any studies concerned with the metabolic recycling of free rhamnose in eukaryotic organisms. It
remains therefore unclear by which mechanism rhamnose is degraded or otherwise recycled. With the present
knowledge of metabolism, the only known route explaining rhamnose degradation is a pathway analogous to
the one characterized in E. coli.

Table 2 Evidence for predicted reactions outside the ergosterol pathway. Listed are reactions for which we see
strong evidence that they must be included in the draft network of Chlamydomonas reinhardtii. The presented
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candidate reactions have been predicted by our algorithm and their presence is supported by biological
reasoning (see text). In the first column, the target metabolite, for which a particular reaction is responsible, is
given. Reactions (second column) are specified by their EC number. In cases where no EC number is assigned
to a reaction, an alternative name is given. In the third column, we state additional evidence obtained by
sequence homology studies. Where applicable, we explicitly state the best candidate genes encoding for
corresponding enzymes

Target Reaction/EC number Evidence

L-rhamnose 5.3.1.14 No hit
2.7.1.5 No hit
4.1.2.19 No hit
2.7.7.64 Ortholog (32 796) to Arabidopsis (AT5G52560)
3.1.3.23 Blast hit (196 269) against E. coli (SUPH)

Hydroxyproline Hydroxyproline oxidase Ortholog (146 649) to Arabidopsis (AT3G30775)
2.6.1.23 (= 2.6.1.1) Ortholog (186 959) to Arabidopsis (AT4G31990)
4.1.3.16 No sequences available

Phenylacetaldehyde 4.1.1.43 Ortholog (135 197) to yeast PDC5
4.1.1.53 Blast hit (40 158) against Solanum lycopersicum AADC1A

Lumichrome 3.5.99.1 No hit
N-acetyl-L-phenylalanine 2.3.1.53 No sequences available

Hydroxyproline. Even though the amino acid derivative hydroxyproline is chemically and functionally
unrelated to the sugar rhamnose, some common principles can be understood when studying the predicted
production routes. Similar to the case of rhamnose, also for hydroxyproline the degradation pathway was
predicted to operate in reverse direction. Hydroxyprolines are important structural components of collagen in
animals36 and of cell walls in plants37 and algae, including Chlamydomonas.38 Moreover, in plants
hydroxyproline-rich glycoproteins play an important role for providing structural integrity.39 The usual
biosynthesis pathway involves the enzyme prolyl hydroxylase (EC 1.14.11.2), hydroxylating proline to
hydroxyproline. It accepts only peptidyl proline as a substrate.40 Again, the automatic network extension
algorithm is not able to relate this reaction to the synthesis of hydroxyproline, explaining why also in this case
only degradation pathways are predicted.

In Chlamydomonas under sulfur limiting conditions high concentrations of hydroxyproline have been
observed32 and increased expression levels of mRNAs from hydroxyproline-rich polypeptides have been
reported.41 Upon resupply of sulfur, these mRNAs displayed a rapid decline, suggesting high turnover rates also
on protein levels. The resulting free hydroxyprolines have to be reincorporated into metabolism by some
degradation pathway. In contrast to rhamnose, hydroxyproline degradation is described and annotated in A.
thaliana. It involves four consecutive enzymatic reactions, resulting in the degradation products pyruvate and
glyoxylate. The first step is mediated by hydroxyproline oxidase, for which we could identify clear orthologs in
the genome of Chlamydomonas to enzymes annotated in A. thaliana. The second enzyme, Δ1-pyrroline-
3-hydroxy-5-carboxylate dehydrogenase (EC 1.5.1.12), has been annotated previously and was therefore
already incorporated into the draft network. For the remaining two enzymes, 4-hydroxyglutamate transaminase
(EC 2.6.1.23) and 4-hydroxy-2-ketoglutarate aldolase (EC 4.1.3.16), no protein sequences are available such
that more detailed searches could not be performed. Considering the strong evidence that the first two reactions
of the degradation pathway are present in the metabolic network of Chlamydomonas, we strongly assume that
also enzymes for the latter two reactions are encoded in its genome, since they provide the only plausible route
allowing for reutilization of free hydroxyproline (see Table 2).

Phenylacetaldehyde. The aromatic compound phenylacetaldehyde is a volatile compound and plays a role in
many floral scents.42 Its precise role in Chlamydomonas is unclear, however, its presence has been
experimentally proven. To explain its production, our algorithm proposed several alternative solutions involving
a single reaction. Since a direct precursor, the aromatic amino acid L-phenylalanine, is producible by the draft
network, one possibility is to extend the network by the reaction
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H2O + O2 + L-phenylalanine  NH3 + H2O2 + CO2 +

phenylacetaldehyde,
(5)

catalyzed by phenylacetaldehyde synthase (no EC number assigned). An alternative is the extension of the
network by phenylalanine decarboxylase (EC 4.1.1.53), catalyzing the reaction

 L-phenylalanine  CO2 + phenylethylamine, (6)

since phenylethylamine oxidase (EC 1.4.3.6), converting phenylethylamine into phenylacetaldehyde, is already
annotated and included in the draft network. The third possibility uses phenylpyruvate as precursor which is
also producible by the draft network. The corresponding reaction that needs to be included is

 phenylpyruvate  CO2 + phenylacetaldehyde, (7)

catalyzed by phenylpyruvate decarboxylase (EC 4.1.1.43).
Sequence comparison reveals a high probability that the latter two alternatives are indeed present in the

genome-scale network of Chlamydomonas. For phenylalanine decarboxylase we obtained a high similarity
against a protein in the tomato Solanum lycopersicum, for phenylpyruvate decarboxylase we found a clear
ortholog in yeast (see Table 2).

Lumichrome. Also lumichrome is among the unambiguously identified metabolites that cannot be produced by
the draft network. Lumichrome has also been identified in Chlamydomonas with an independent technique
(reverse phase HPLC and UV detection).43 There, the authors have demonstrated that lumichrome secreted by
Chlamydomonas is capable of activating quorum sensing receptors in bacteria, thus disrupting their quorum
sensing regulation. This hints at a role of lumichrome in a defense mechanism against bacterial pathogens.

The reaction

 H2O + riboflavin  lumichrome + ribitol, (8)

catalyzed by the enzyme riboflavinase (EC 3.5.99.1) occurred in all 10 000 calculated extensions. Both,
riboflavin and ribitol are present in Chlamydomonas’ draft network and may be produced from the applied
medium. In fact, this is the only reaction found in MetaCyc with lumichrome as reactant. The only protein
sequence recorded in the enzyme database BRENDA44 for an enzyme with this catalytic activity has been
obtained from the bacterium Enterobacter sp. (strain 638). To this particular sequence, we could not detect any
homolog within the genome of Chlamydomonas (see Table 2). This, however, does not exclude the possibility
that a gene coding for riboflavinase is present. We consider the existence of a riboflavinase highly plausible
since all other explanations for the presence of lumichrome would include hitherto unknown mechanisms.

Acetyl phenylalanine. Also N-acetyl-L-phenylalanine, observed but not producible by the draft network, is
involved in only one reaction in the MetaCyc database. The enzyme phenylalanine N-acetyltransferase (EC
2.3.1.53) catalyzes the reaction

 L-phenylalanine + acetyl-CoA  N-acetyl-
L-phenylalanine + coenzyme A. (9)

Enzymatic activity was demonstrated in ref. 45 in E. coli, but no sequence is available (see Table 2). Therefore
it remains uncertain whether the production of N-acetyl-L-phenylalanine in Chlamydomonas proceeds by a
homologous enzyme or by a different, unknown, mechanism.

Glycerol-2-phosphate. Similarly, glycerol-2-phosphate, detected but not producible by the draft network,
participates in exactly one reaction found in MetaCyc, namely

 H2O + glycerol-2-phosphate  phosphate + glycerol, (10)

catalyzed by the enzyme glycerol-2-phosphatase (EC 3.1.3.19). For this enzyme, no protein sequence is
available and therefore sequence homology studies could not be performed. As shown in ref. 46, glycerol-
2-phosphate can result from the breakdown of sn-glycerol-3-phosphodiester derivatives such as phospholipids.
We cannot exclude that this reaction occurred during sample preparation and therefore do not consider this
reaction as a good candidate to be included in the network of Chlamydomonas.

Discussion

Following the spirit of systems biology research, we propose a novel strategy integrating data resulting from
modern high-throughput technologies to improve gene annotations and derive more complete genome-scale
metabolic networks. The ability to handle incomplete and heterogeneous information and nevertheless derive
biologically plausible and experimentally testable hypotheses makes our methodology widely applicable and
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flexible. We envisage further enhancements of our method in several respects. Besides genomic and
metabolomic data, existing enzymes can be inferred from proteomics measurements. This information may be
incorporated in the definition of the draft metabolic networks or used for validation of the computational
predictions.

We have demonstrated that our method produces meaningful results by extending artificially produced draft
networks, which we generated by removing reactions from the genome-scale network of E. coli. We considered
a restricted set of minimal functions that the metabolic network must fulfill, and thus focused our proof of
principle analysis to the central metabolism involving the synthesis of amino acids and nucleotides. The
functionality of the reduced networks was regained and the predicted extensions were compared with the truly
removed reactions. Including sequence information in the form of multiple-species profile hidden Markov
models, E-values were calculated, reflecting the likelihood that proteins are encoded in the genome. Reactions
catalyzed by enzymes with a low E-value, indicating a high probability, were preferentially included in the
extensions. The importance of the E-value is controlled by a parameter β, whose effect is studied in detail in the
Supporting Text S1 (ESI  ) to this article. We could show that including sequence information indeed leads to a
higher quality of the predicted extensions.

The chosen target compounds compose the largest fraction of biomass precursors as defined in the published
genome-scale models for E. coli.27,28 We have decided to select a minimal version of biomass producibility since
this condition is sufficient to demonstrate that our method is able to identify realistic completions of networks to
consistency. It is in principle straight forward to employ more restricted conditions. Similarly, alternative carbon
sources that E. coli can reportedly grow on or other combinations of nutrients that experimentally ensure growth
can in principle be used to assess the completeness and identify missing reactions. In fact, a greater variety of
minimal growth media and a larger set of verified target metabolites will yield more testable hypotheses. An
automated algorithm to infer target metabolites is provided by the GapFind,16 which uses the network topology
to find metabolites without a producing reaction and their dependent products. We envisage a possible
improvement of the predictions by combining the functional search for missing targets of our approach with the
structural prediction of targets provided by GapFind. In the subsequent analysis of the draft metabolic network
of Chlamydomonas reinhardtii we used a significantly enlarged set of target metabolites which were directly
motivated by experimental observations.

In contrast to E. coli, Chlamydomonas is a eukaryotic organism. For these, metabolic pathways are not as
well characterized as for the simpler prokaryotes. This is in particular true for the localization of the enzymes
and thus for the compartments that single pathways operate in. This is reflected in the limited information on
enzyme localization contained in metabolic databases. For our calculations, we therefore neglected
compartmentation. As a consequence, our predictions cannot include putative transport processes or the
localization of enzymes. However, this simplified approach is nevertheless suitable to detect inconsistencies
because it is impossible that functions missing in a non-compartmented model can be performed in a more
detailed model including subcellular structures. There is no principle limitation of our approach to
non-compartmented models and we expect that with the increasing knowledge on enzyme localization and
intracellular transport processes, the predictive power of our method will further increase.

For a ‘real’ draft network, such as that of Chlamydomonas, it is not a priori known whether the reference
network does provide the correct solution or, in fact, contains any solution at all. We have presented a detailed
analysis for the example of the ergosterol biosynthesis pathway. The computed extensions illustrate how the
ability to propose several alternatives triggers new research activities. In this particular case, one of two
predicted alternatives could always be associated with the known pathway in yeast while the other represented
the human pathway. This finding inspired a phylogenetic analysis of the involved enzymes. We obtained hints
that squalene monooxygenase, a key enzyme required for the synthesis of many sterols, has diverged early from
homolog enzymes found in higher eukaryotes. As closest homologs we could identify genes in other algal
species which also have not yet been annotated. This demonstrates how our computational approach in
combination with phylogenetic studies may lead to improved gene annotations even for organisms which were
not originally the main subject of investigation. Some of the other enzymes in the ergosterol pathway bear a
close resemblance to yeast proteins while others are most similar to human or plant proteins. This intricate
patchwork structure raises new questions about the evolutionary origin of the sterol biosynthesis pathways in
green algae. We speculate that key enzymes have diverged early to form a distinct subgroup while others
present in more specialized pathways have diverged later during evolution. More detailed phylogenetic studies
will be necessary to further elucidate the evolutionary history of sterol synthesis.

The detailed investigations of the predictions of our algorithm for the target metabolites L-rhamnose and
hydroxyproline revealed a fundamental difficulty in defining consistent large-scale metabolic network models.
Both metabolites belong to a class of substances which are not directly produced, their free forms rather result
from macromolecule assembly and subsequent breakdown. This indirect mode of production raises the question
where the limits of metabolism should be defined. A detailed description of the actual synthesis pathways
requires the consideration of polysaccharides and proteins. However, macromolecules are usually not
considered as metabolites but as higher level structures composed of a limited number of different building
blocks which are provided by metabolism, as depicted in Fig. 8. To resolve this conflict, we propose a
macromolecule-free description by considering the overall reaction. For the incorporation of UDP-rhamnose
into polysaccharides and the subsequent release of rhamnose, for example, the net conversion can be
summarized as
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 UDP-L-rhamnose → UDP + L-rhamnose. (11)

Such a simplified description of the production of free rhamnose has the advantage that inclusion of
macromolecules as metabolites is avoided, but meaningful calculations are unproblematic. The flux through this
reaction, for example, is simply interpreted as the net turnover of rhamnose residues.

Fig. 8 Limits of metabolism. This schematic view
illustrates that some metabolites may only be produced
in conjunction with macromolecules; their free forms
result through macromolecule degradation. Since this
route is not included in the description of small
molecule metabolism, for such metabolites the reverse
degradation pathway is predicted (dashed red arrow).
For a consistent description of a metabolic network
including the production of such metabolites, we
suggest incorporation of overall reactions describing
the net conversion (dashed gray arrow).

The calculations presented in this paper have been performed on networks which have been directly
retrieved from databases. By this choice we could demonstrate that our method is robust against stoichiometric
inaccuracies which are found in many biochemical databases.47,48 This robustness results from the fact that the
underlying test whether a network may perform a given function was carried out using the method of network
expansion (see Supporting Text S4, ESI  ). This forward approach to identify producible metabolites is stricter
than the condition that there exists a flux distribution for its production and it has been shown49 that the
identified metabolites are even producible if a constant increase of cellular volume is considered, which is not
necessarily the case if a producing flux distribution exists, especially if intermediates from a conserved pool of
metabolites are involved. While it is in principle straight-forward to replace this analytic method with the
mathematically more stringent theory of flux balance analysis (FBA), the latter is very sensitive to
stoichiometric imbalances. To demonstrate this, we have systematically compared our predictions for the
artificially created draft networks of E. coli with predictions obtained from solving constrained optimization
problems. For this, we implemented an algorithm that closely resembles those used for GapFill16 and in ref. 18
(for details, see Supporting Text S4, ESI  ). We found that in general, the FBA based approach obtained smaller
solutions which were subsets of extensions found by our approach. This is expected, since the former approach
is designed to find a solution minimal with respect to the number of contained reactions. However, often the
constrained optimization failed to identify reactions that are necessary, because due to inaccuracies in the
stoichiometries in some reactions, some metabolites are wrongly considered as producible. While the FBA
based approach tends to overestimate the set of producible metabolites, our approach, which relies on the
method of network expansion, tends to underestimate this set and therefore imposes stricter conditions on the
network functions. As a consequence, our approach is more robust against stoichiometric imbalances (see
Supporting Text S4, ESI  ). Motivated by the systematic comparison of the two methods performed in ref. 49,
we expect for the ideal case, in which all imbalances of reactions contained in metabolic databases have been
corrected, that the results obtained by an FBA based approach would be almost identical. In such a case, the
main advantage of using the method of network expansion is simply a considerably smaller computational
effort. An expected advantage of an FBA based approach is that besides the simple existence of possible
production routes also the distribution of fluxes may be assessed. This further expands the applicability of our
integrative approach by the incorporation of flux data for validation of the computational predictions.

Graph-based approaches and local pathway searches can only provide a rough approximation of our results.
The KEGG tool PathComp50 only considers binary relationships between substrate-product pairs to calculate
connecting pathways. Thus, the resulting pathways do not necessarily provide possible production routes since
other substrates may be required. The pathway hole filler within in the PathoLogic program provided by the

An integrative approach towards completing genome-scale metabolic networks (DO... http://www.rsc.org/delivery/_ArticleLinking/ArticleLinking.asp?JournalCode=M...

14 of 19 02/11/2009 13:42



Pathway Tools software suite15 requires that for each draft network a new Cyc-database is created and is
therefore impractical for a systematic comparison. Moreover, it is restricted to the identification of reactions
annotated in predefined pathways. We found that approximately 25% of the reactions identified by our method
are not associated with any MetaCyc pathway and thus would not have been found by PathoLogic (see
Supporting Text S3, ESI  ).

While we could demonstrate that our method yields plausible and testable predictions regarding missing
reactions, it cannot identify reactions that are wrongly included in the network models and that should be
excluded. This, however, is a more difficult problem. Even for enzymes for which encoding genes have been
identified with high confidentiality, it is possible that they are only expressed under rare conditions and it is
therefore difficult to assess whether they should be retained or excluded. Theoretically, unnecessary reactions
could be identified by cleaving all those reactions from the draft network for which either no clear sequence
homologies are found or which cannot carry a flux under any known external growth condition. Subsequently,
our algorithm can be applied to find minimal extensions. The resulting networks will then only contain those
reactions which are absolutely required to explain the presence of the observed metabolites. This approach is
suitable if one aims at finding a consistent network containing only reactions with a high confidentiality.

The predicted extensions draw their reactions from reported enzymatic reactions stored in databases. This
limits the predictions to previously characterized reactions and pathways. While this limitation is unproblematic
as long as one aims at completing pathways included in primary metabolism, for which our understanding is far
advanced, it will become necessary to include completely novel reactions when aiming at predicting synthesis
routes for secondary metabolites, for which experimental knowledge is still sparse. A challenge for future
research will be to expand our strategy to construct reactions that are chemically feasible but not yet described.
A possible approach is based on reaction patterns defined by the EC nomenclature system or the generalized
reaction patterns as defined in ref. 51. The difficulties to be expected include the fact that the number of possible
reactions from which the extensions are calculated will be tremendous. We estimate that such an approach can
still be successful when focussing the search to a restricted aspect of metabolism, for example a well defined
group of structurally similar secondary metabolites.

Our work has direct implications for experimental as well as theoretical researchers. For theoreticians, the
proposal of consistent network models is of considerable value. Even though predicted extensions may be
incorrect, the resulting networks are at least consistent with experimental observations and hence they are far
more suited for subsequent quantitative analyses than the draft networks lacking observed metabolic functions.
For experimentalists, the proposal of missing pathway elements and putative genes coding for the missing
enzymes can facilitate the design of new experiments aiming at proving the existence of certain metabolic
pathways.

Methods

Data preparation

To apply the extension algorithm, we have constructed two organism-specific metabolic networks for E. coli
and Chlamydomonas reinhardtii, and one reference network containing enzymatic reactions from a large
number of organisms. These networks were obtained by parsing the flat files of the EcoCyc,26 ChlamyCyc30 and
MetaCyc24 databases. EcoCyc and MetaCyc were both version 12 as released on April 1st, 2008. The
ChlamyCyc pathway database for Chlamydomonas version 1.0 (June 2008) featured 272 pathways with their
annotated genes, enzymes, and compounds. ChlamyCyc was assembled based on the recently published genome
sequence19 and MapMan52 annotations of Chlamydomonas genes using the Pathway Tools software53 within the
BioCyc family of databases. The predicted pathways and reactions were verified by using orthology information
from fifteen other species as well as manual curation.

For the organism-specific networks, thermodynamic constraints were considered if a reaction was given as
irreversible in the corresponding database. In such a case, only the physiological direction was included. For the
reference network, from which reactions are recruited to calculate the extensions, we have explicitly included
every reaction in both directions. This means that extensions may include reactions operating in a
non-physiological direction. We deliberately chose not to exclude this possibility, since in principle all reactions
may be reversed and the information found in databases about the directionality of reactions is often incorrect.
Moreover, much about the network architecture can be learned from the cases in which only extensions are
found including reactions operating in their ‘wrong’ directions. This became clear when discussing rhamnose
and hydroxyproline metabolism.

Many reactions involve compound classes, such as ‘a hexose’, describing a large set of metabolites. Since it
is difficult to automatically determine substrate and product pairs from their corresponding classes, we have
conducted this only for the particularly simple classes NAD(P)H and NAD(P)+, which both contain only two
metabolites. All other classes were taken into our network as if they were ordinary compounds.

In the databases, some metabolites contain chemical formulas with unspecified residues (denoted by a
chemical ‘element’ R). Reactions involving such reactants were ignored. Similarly, reactions for which the sum
formulas on the left and the right side clearly disagree, have been disregarded.

While embedding the EcoCyc and ChlamyCyc networks into the reference network, we observed the
following rules. Reactions with the same ID in the organism-specific and the reference network were considered
only once. In the rare cases where these reactions described different stoichiometries, the reaction from the
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organism-specific database was used. Also if two or more reactions described exactly the same chemical
conversions, only one of them has been considered.

The resulting metabolic networks consist of more than 16 000 reactions and 5000 compounds.

Species-independent reaction models and E-values

To determine similarity scores for the annotated protein sequences from E. coli and Chlamydomonas we utilized
the Pfam54 and Uniprot55 databases by using protein domain information, EC numbers, multiple sequence
alignments and profile hidden Markov models (HMMs) (Fig. 2). First, we extracted all reactions from MetaCyc
with at least one annotated protein sequence. If for such a reaction the Pfam domain family was annotated we
used the multiple seed alignment and the according profile HMM as given by Pfam for further computations. If
no Pfam family was annotated but a 4-digit EC number for the reaction was given, we downloaded all protein
sequences from Uniprot annotated with the according EC number. Otherwise, we used standard BLAST56 with a
score cut-off of 50 and an E-value threshold of 1e−10 to collect significant sequence hits. The E-value is the
expectation value representing the number of different alignments with the same or better total score, that could
be expected to occur within the database purely by chance. The lower the E-value, the more significant the
score. Afterwards, the reaction-specific protein sequences were aligned using the multiple alignment program
MAFFT.57 The resulting multiple sequence alignment was then converted into a reaction-specific profile HMM
using the HMMER software.25 HMMER turns a multiple-sequence alignment into a probability based position-
specific scoring system. Using such calibrated reaction-specific profile HMMs we searched the protein
sequences from E coli and Chlamydomonas with an HMMER E-value cut-off of 1.

If several database entries corresponded to one reaction stoichiometry, for each an E-value was obtained and
the reaction was associated with the minimum of these values. For reactions with an explicit direction stated in
the database, the E-value was associated only with the physiologically observed direction. In this way, reactions
operating in the physiological direction are included in the extensions with a higher probability.

Extensions of the metabolic network

The extension algorithm (see Protocol 1) is designed in a similar fashion as the algorithm used in ref. 58, where
we identified minimal sets of required nutrients. Here we modify the algorithm to determine a minimal
extension E to a metabolic draft network RD, enabling it to produce the target compounds T from the nutrient
compounds S (also called seed). Candidate reactions for the extension are taken from an ordered set of reactions
RO. As only a fraction of the reactions RO are used to extend the network, the sequential order of RO is crucial.
Thus, different orderings are used to produce a large number of different extensions. RO ideally consists of many
known reactions found in other metabolic networks.

Protocol 1: minimalExtension

First, we start with the fully extended network (RD ∪ RO) that is a union of the draft network and the network
derived from the database, ensuring the producibility of all target compounds T. Then the reactions originating
from the database (set RO) are removed one by one in a strict order. This is why the order of the list is important
and different orderings may result in different extensions. It is then tested whether still all target metabolites T
are producible. If this is the case, the reaction is permanently removed and will not be an element of the
minimal extension E. If not all targets T are producible after removal of this reaction, it was apparently essential
for some production route. It is therefore returned to the network and belongs to the minimal extension E. The
resulting set of reactions is minimal in the sense that the removal of any reaction would make at least one target
metabolite unreachable by the remaining network.

The test of producibility, denoted as targetsProducible, was implemented applying the method of network
expansion.21 This method depends on heuristics regarding the choice of cofactors, an issue which is discussed in
detail in ref. 22. A summary of this discussion and the complete list of used cofactors is given in the Supporting
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Text S5, ESI.
Two methods are applied to create different sequential orderings RO and hence different minimal extensions.

In the first approach we randomly shuffle the list. Doing this, all reactions have the same probability to end up at
a certain position in the list. The second approach of randomization favors reactions according to a similarity
score associated with each reaction. This score is defined as the logarithm of the E-value, which has been
determined as described above. Since reactions situated at the end of the sequentially ordered set RO have a
higher probability to be included in the extension, we sort the list such that reactions with a low score are
preferentially positioned near the end (see Protocol 2). For that, each element of the ordered set is exchanged
with another randomly selected element with the probability e−βΔS, where ΔS is the difference between the
scores of the corresponding reactions and β an adjustable parameter quantifying the randomness of the mixing.
A value of β = ∞ means complete ordering (no randomness at all), while a value of β = 0 corresponds to the
random shuffling of the first approach. The functions randomFloat and randomInt return uniformly distributed
random numbers (floating point and integer respectively) in the given interval. The function exchangeElements
swaps the position of the two elements in the given ordered set.

Protocol 2: shuffleListByScore

To achieve a proper mixing according to the chosen β, the function shuffleListByScore is called 100 times
before calculating the first extension (this is the so-called thermalization).

Comparative sequence analysis

Orthologs have been identified by using the Inparanoid59 software tool. The phylogenies were built as follows:
we downloaded all available protein sequences for a given reaction from Uniprot.55 Chlamydomonas genes were
then aligned together with the reaction-specific sequences using the MAFFT57 multiple alignment webserver.
Phylogenetic trees were then constructed using the Neighbor-Joining algorithm.
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Footnotes

 This article is part of a Molecular BioSystems themed issue on Computational and Systems Biology.
 Electronic supplementary information (ESI) available: S1: The shuffling parameter β and ensemble size. S2: Artificially reduced B.

subtilis draft networks. S3: Known pathways in extensions. S4: Comparison to FBA based methods. S5: Cofactor metabolites. S6:
Nutrients and target metabolites. S7: Predicted ergosterol pathway. S8: Phylogenies for putative Chlamydomonas enzymes of the
predicted ergosterol pathway. See DOI: 10.1039/b915913b
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